

Documento Teórico Base de Algoritmos (ATBD)

Colección 3.0

Versión 1.0

Octubre 2025

Equipo MapBiomas Ecuador

Coordinador técnico de MapBiomas en Ecuador

Wagner Holguín

Especialistas en mapeo

Wagner Holguín Cristina Aguilar Katherine Terán Fabricio Garcés Cristina Cabrera Stephany Cevallos

Asistentes a la interpretación

Fernando Villacis (transversal minería)

Directora Ejecutiva de Fundación Ecociencia

Carmen Josse

Institución

Fundación de Estudios Ecológicos Ecociencia

Lizardo García E10-80 y 12 de Octubre. Edificio Alto Aragón, Oficina 5C Quito-Ecuador +593 2 2523 066 http://ecociencia.org

Cómo citar

W. Holguín, C. Aguilar, K. Terán, F. Garcés, C. Cabrera & S. Cevallos. (2025). Documento de Bases Teóricas de Algoritmo (ATBD) MapBiomas Ecuador Colección 3.0, Apéndice Ecuador.

Índice

Lista de Tablas	3
Lista de Figuras	4
1. Introducción	6
2. Características generales del país	6
2.1. Breve descripción de Ecuador	6
2.2. Biomas de Ecuador	7
2.2.1. Bioma Bosque húmedo tropical del Pacífico	9
2.2.2. Bioma Bosque seco ecuatorial	9
2.2.3. Bioma Andes	10
2.2.4. Bioma Amazonía	11
2.2.5. Bioma Galápagos	12
3. Iniciativas de mapeo de cobertura y uso del suelo a escala nacional	13
4. Detalles metodológicos aplicados durante la Colección 3.0 de MapBiomas Ecuador	15
4.1. Generación de mosaicos anuales	15
4.1.1 Feature Space	20
4.2. Clasificación del Mapa General	20
4.2.1 Regiones de clasificación	22
4.2.2 Leyenda	24
4.2.3 Rutinas de clasificación	26
4.2.4 Parámetros de clasificación	28
4.3 Post-clasificación	32
4.3.1 Filtro para relleno de vacíos (GapFill)	32
4.3.2 Filtro temporal	35
4.3.3 Filtro espacial	39
4.3.4 Filtro de frecuencia	41
4.3.5 Orden de aplicación de filtros por región en Ecuador	46
4.3.6 Máscaras	47
Afloramiento rocoso (ID 29)	47
Silvicultura (ID 9)	48
Acuicultura (ID 31)	49
Remapeo de arrozales a mosaico de agricultura y/o pastos (ID 21)	49
Remapeo de playas, dunas y arenas (ID 23)	50
Remapeo de Otra área natural sin vegetación (ID 68)	50
4.3.7 Filtro temporal ajustado	51
4.3.8 Filtro de frecuencia ajustado	51
4.4 Clasificación de los temas transversales	52
4.5 Integración	53
4.5.1 Integración nacional	53
5. Referencias	57

6. Anexos	58
Anexo 1: Mapas de Referencia	58
6.1 Mapa de Ecosistemas del Ecuador Continental escala 1:100.000	58
6.2. Mapa de Cobertura y Uso de la Tierra escala 1:25.000	58
6.3 Mapa de Cobertura y uso de la tierra y Sistemas productivos agropecuarios del Ecuador continental (versión editada por el M	1inisterio
de Agricultura y Ganadería en 2020) escala 1:25.000	59
6.4 Mapas de Cobertura y Uso de la Tierra (CUT) del Ecuador Continental escala 1:100.000	60
6.5 Mapa de Ecosistemas de Galápagos	62
6.6 Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 2000-2017 de la Amazonía	62
6.7 Colección 2 de Mapas anuales de Cobertura y Uso del Suelo 1985-2018 de la Amazonía	62
6.8 Colección 3 de Mapas anuales de Cobertura y Uso del Suelo 1985-2020 de la Amazonía	63
6.9 Colección 4 de Mapas anuales de Cobertura y Uso del Suelo 1985-2021 de la Amazonía	64
6.10 Colección 5 de Mapas anuales de Cobertura y Uso del Suelo 1985-2022 de la Amazonía	65
6.11 Colección 6 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 de la Amazonía	66
6.12 Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 1985-2022 del Ecuador	67
6.13 Colección 2 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 del Ecuador	67
Anexo 2: Leyenda del Mapa de Ecosistemas de Ecuador	68
Anexo 3: Leyenda del Mapa de Cobertura y Uso de la Tierra del Ecuador Continental	70
Anexo 4: Feature space de la Colección 3.0 de MapBiomas Amazonía	72
Anexo 5: Ecosistemas de la Amazonía de Ecuador agrupados según las clases de cobertura y uso de suelo equivalentes de la leyenda MapBiomas Ecuador	72
Anexo 6: Categorías de Uso del Suelo de Ecuador agrupados según las clases de cobertura y uso de suelo equivalentes de la leyenda MapBiomas Ecuador	75
Anexo 7: Categorías de Ecosistemas Nativos de Galápagos agrupados según las clases de cobertura y uso de suelo equivalentes de la l MapBiomas Ecuador	,
Lista de Tablas Tabla 1. Biomas como parte del proyecto MapBiomas Ecuador. Áreas medidas empleando sistema de referencia de coordenadas SIRGAS 2. (Elaboración Ecociencia)	
Tabla 2. Datos cartográficos de cobertura vegetal y uso del suelo existentes para Ecuador (Elaboración Ecociencia)	
Tabla 3. Cantidad de mosaicos anuales procesados por región para el área dentro del límite RAISG (Elaboración Ecociencia)	
Tabla 4. Cantidad de mosaicos anuales procesados para el área fuera del Límite RAISG(Elaboración Ecociencia)	
Tabla 5. Cantidad de imágenes satelitales Landsat que han capturado información del Ecuador hasta el 2024 (Elaboración Ecociencia)	
Tabla 6. Regiones de clasificación definidas en Ecuador. Áreas medidas empleando sistema de referencia de coordenadas Sphere Sinusoidal	
(Elaboración Ecociencia)	
Tabla 7. Parámetros de muestreo y número de árboles de decisión empleados por región de clasificación (Elaboración Ecociencia)	28
Tabla 8. Variables más significativas identificadas por región de clasificación (Elaboración Ecociencia)	29
Tabla 9. Parámetros del filtro Gapfill definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración Eco 33	
Tabla 10. Parámetros del filtro temporal definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia)	

Ecociencia)	40
Tabla 12. Parámetros del filtro de frecuencia definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador(Elaboración	
Ecociencia)	42
Tabla 13. Orden de aplicación de filtros por región de clasificación en la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia)	46
Lista de Figuras	
Figura 1. Área de estudio en Ecuador Colección 3.0 (Elaboración Ecociencia)	7
Figura 2. Biomas de Ecuador: Regiones empleadas para la Colección 3.0 de MapBiomas Ecuador(Elaboración Ecociencia)	7
Figura 3. Foto Bioma Bosque húmedo tropical del Pacífico. Foto: Jorge Vinueza	9
Figura 4. Foto Bioma Bosque seco ecuatorial	10
Figura 5. Foto Bioma Andes	11
Figura 6. Foto bioma Amazonía	12
Figura 7. Foto Bioma Galápagos	13
Figura 8. Cartas para límite RAISG (Elaboración Ecociencia)	15
Figura 9. Mosaicos anuales 1985-2024 de la Colección 3.0 de MapBiomas Ecuador dentro del límite RAISG (Elaboración Ecociencia)	16
Figura 10. PathRows No RAISG Ecuador (Elaboración Ecociencia)	17
Figura 11. Mosaicos anuales 1985-2024 de la Colección 3.0 de MapBiomas Ecuador fuera del límite RAISG (Elaboración Ecociencia)	18
Figura 12. Efecto de la aplicación de un reductor a una colección de imágenes para componer un mosaico (composite) (Google, 2020)	19
Figura 13. Cadena de procesamiento completa del Mapa General de la Colección 3.0 MapBiomas Ecuador (Elaboración Gaia Amazonas)	21
Figura 14. Regiones de clasificación de Ecuador para la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia)	22
Figura 15. Clases mapeadas en la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia)	26
Figura 16. Ejemplo de sorteo de puntos de muestreo de entrenamiento para una región de clasificación de la Amazonía ecuatoriana. a) Límite de	la
región de clasificación 40201 "Amazonía Baja 1". b) Mapa de píxeles estables para sorteo de puntos de muestreo. c) Puntos de muestreo sorteado	
en la región 40201 (Elaboración Ecociencia)	
Figura 17. Funcionalidad del filtro Gapfill de la Colección 3.0 de MapBiomas Ecuador(Elaboración MapBiomas)	33
Figura 18. Funcionalidad del filtro temporal de MapBiomas Ecuador (Elaboración MapBiomas)	35
Figura 19. Funcionalidad del filtro espacial de la Colección 3.0 de MapBiomas Ecuador (Elaboración MapBiomas)	39
Figura 20. Funcionalidad del filtro de frecuencia de MapBiomas Ecuador(Elaboración MapBiomas)	41
Figura 21. Geometrías de exclusión (hidden). a)Clasificación pre filtro. b) Clasificación post filtro de frecuencia. c) Mosaico Landsat año 2022 d) Zona de exclusión en color blanco (Elaboración MapBiomas)	42
Figura 22. Máscara de afloramiento rocoso (ID 29). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d) Imagen de alta resolución de Google Earth (Elaboración Ecociencia)	47
Figura 23. Máscara de silvicultura (ID = 9). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramient	
rocoso. c) Mosaico Landsat año 2022 d)Imagen de alta resolución de Google Earth (Elaboración Ecociencia)	
Figura 24. Máscara de acuicultura (ID = 31). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramien	nto
rocoso. c) Mosaico Landsat año 2022 d)Imagen de alta resolución de Google Earth (Elaboración Ecociencia)	49
Figura 25. Máscara de arrozales (mosaico de agricultura y/o pastos, ID = 21). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d) Imagen de alta resolución de Google Earth (Elaboración Ecocieno 50	ia)

Tabla 11. Parámetros del filtro espacial definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración

b) Clasificación al aplicar el filtro. c) Serie temporal pre filtro. d) Serie temporal post filtro (Elaboración Ecociencia)
Figura 27. Filtro de frecuencia ajustado para la clase de áreas naturales sin vegetación (ID = 68). a) Clasificación original (antes de la aplicación del
filtro). b) Clasificación al aplicar el filtro. c) Serie temporal pre filtro. d) Serie temporal post filtro (Elaboración Ecociencia)
Figura 28. Esquema metodológico empleado por clase de la leyenda en Ecuador (Elaboración Ecociencia)
Figura 29. Reglas de prevalencia empleadas durante la fase de integración nacional de la Colección 3.0 de MapBiomas Ecuador . Las letras "G" (Mapa
General) y "T" (Tema Transversal) junto al nombre de cada clase diferencian el origen del dato (Elaboración Ecociencia)
Figura 30. Ejemplo del efecto de la integración de capas para una zona en la Amazonía ecuatoriana (región 40201). a) Resultado clasificado del Mapa
General 2021; b) Resultado clasificado del Tema transversal "bosque inundable" 2021; c) Mapa final que muestra el resultado del tema "bosque
inundable" integrado al resultado del mapa general 2021; d) Mapa base de Google Earth Engine (imagen de alta resolución sin fecha); e) Mosaico
Landsat para el año 2021; (Elaboración Ecociencia)54
Figura 31. Ejemplo del efecto de la integración de capas para una zona en el Pacífico ecuatoriano (región 40904). a) Resultado clasificado del Mapa
General 2022; b) Resultado clasificado del Tema transversal "manglar" 2022; c) Mapa final que muestra el resultado del tema "manglar" integrado al
resultado del mapa general 2022; d) Mapa base de Google Earth Engine (imagen de alta resolución sin fecha); e) Mosaico Landsat para el año 2022;
(Elaboración Ecociencia)
Figura 33. Mapa mural del mapeo de Cobertura y Uso del Suelo del año 2024 (Elaboración Ecociencia)

1. Introducción

MapBiomas Ecuador es una iniciativa enfocada en monitorear los cambios de uso de suelo de todo el territorio nacional. Este seguimiento mediante mapeo multitemporal permite rastrear las presiones sobre los ecosistemas naturales y el avance de los usos antrópicos del suelo.

El Proyecto MapBiomas Network envuelve a una red colaborativa de especialistas de cada uno de los países miembros en temas como uso del suelo, sensores remotos, SIG y programación. Utiliza procesamiento en la nube y clasificadores automatizados, desarrollados y operados desde la plataforma de Google Earth Engine, para generar una serie histórica de mapas anuales de cobertura y uso del suelo de la Amazonía.

Para el año 2025, en Ecuador, con el liderazgo de EcoCiencia, se generó la tercera colección de mapas de cambio de uso de suelo a nivel nacional y también se actualizó la tercera colección del monitoreo de cuerpos de agua superficiales de todo el país como parte de la iniciativa regional MapBiomas Agua.

Las colecciones de mapas 1 a 6 (publicadas entre 2019 y 2023) de la iniciativa MapBiomas Amazonia consideraron únicamente como ámbito de trabajo el área de Ecuador dentro del límite RAISG, que corresponde a la superficie del Ecuador continental que forma parte de la cuenca amazónica, definida a partir del límite de divisoria de aguas, obtenida de información cartográfica oficial proporcionada por SENAGUA (2014) y CONALI (2016). Este territorio cubre una extensión total de 132,292 km2, equivalente al 53% del país y a 1.6% de la cuenca amazónica (Figura 1).

Para esta colección se consideró como área de estudio **todo el territorio ecuatoriano, incluyendo las islas Galápagos,** lo que equivale a 256,579 km2. El límite fue definido a partir de información cartográfica oficial proporcionada por CONALI (2021). Es por ello que esta serie de mapas anuales de cobertura y uso del suelo representan la Colección 3.0 de MapBiomas Ecuador.

2. Características generales del país

2.1. Breve descripción de Ecuador.

Ecuador está ubicado en el extremo noroccidental de América del Sur. Limita al norte con Colombia, al este y sur con Perú y al oeste con el Océano Pacífico. La división político administrativa del país está compuesta por 24 provincias, 221 cantones, 396 parroquias urbanas y 799 parroquias rurales. El territorio nacional, incluyendo las islas Galápagos, cubre una extensión total de 256.579 km2¹.

Según cifras oficiales, al año 2020, el 48.97% del territorio ecuatoriano continental está cubierto por bosque nativo, lo que equivale a una superficie de 12.191.585 hectáreas. De esta extensión, el mayor porcentaje (75%) se encuentran en la región Amazónica (definida político-administrativamente), aproximadamente el 14% en la región Costa y el 11% en la Sierra (MAATE, 2020).

^{1*} Los límites territoriales internacionales e internos corresponden a los definidos por el Comité Nacional de Límites Internos, CONALI. (2021) modificado por la Fundación EcoCiencia (2023). Escala 1:50.000. Adicionalmente, se considera la superficie de análisis por la iniciativa MapBiomas Ecuador donde no se toman en cuenta algunos islotes que por su tamaño no son susceptibles a analizar con la resolución espacial de las imágenes satelitales.

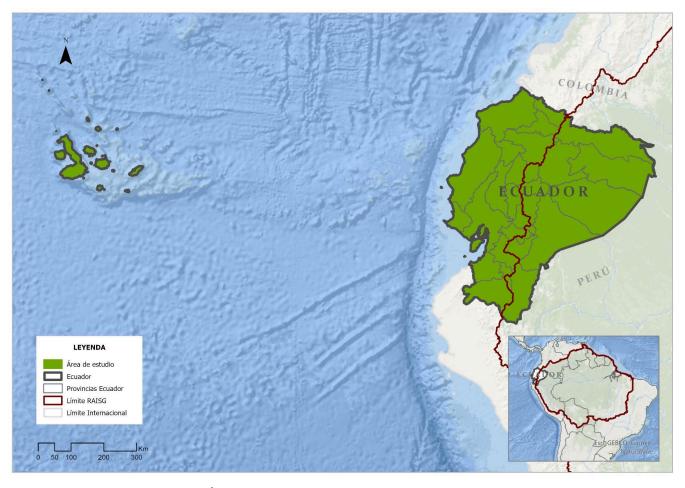


Figura 1. Área de estudio en Ecuador Colección 3.0 (Elaboración Ecociencia).

2.2. Biomas de Ecuador.

El proyecto MapBiomas definió para Ecuador cinco ecorregiones, denominadas dentro del proyecto MapBiomas como "biomas": Bosque húmedo tropical del Pacífico, Bosque seco ecuatorial, Andes, Amazonía y Galápagos (Figura 2, Tabla 1). La delimitación de estas ecorregiones se realizó con base en criterios técnicos sobre la distribución de ecosistemas, utilizando como referencia los siguientes mapas nacionales:

- Sectores biogeográficos² (MAATE, 2013b)
- Ecosistemas del Ecuador Continental (MAATE, 2013a)
- Ecosistemas de los Andes del Norte y Centro (Josse et al., 2009)
- Modelo digital de elevación SRTM de 90 m (Jarvis et al., 2008)
- Mapa de Ecoregiones (Dinerstein et al., 2017)
- Sistemas ecológicos de Latino América y el Caribe (Josse et al., 2003)
- Mapa de Cobertura y Uso de la Tierra y Sistemas Productivos Agropecuarios del Ecuador Continental (MAG, 2021)
- Disponibilidad de imágenes Landsat libres de nubes

² Definido por MAATE como: "Representación de la biogeografía del Ecuador continental, este mapa nos permite explicar las áreas de distribución de las especies de acuerdo a patrones que permiten identificar los centros de origen y dispersión de las mismas, así como comprender los patrones espaciales de la diversidad biológica. Estas unidades se basan en la fisonomía de la vegetación, criterios de paisaje, condiciones climáticas, y componentes florísticos."

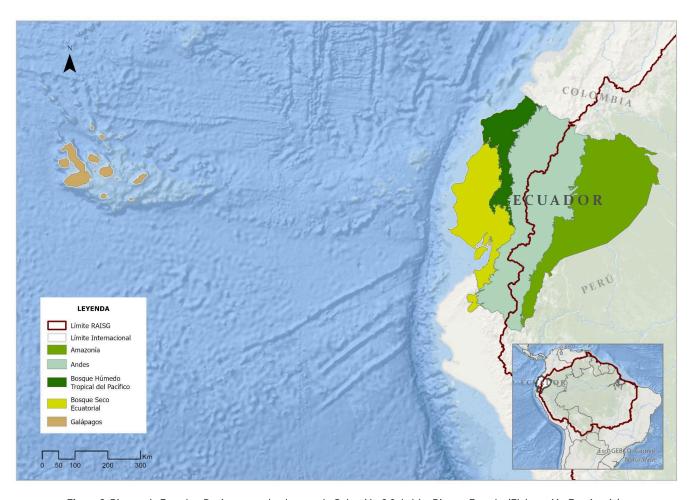


Figura 2. Biomas de Ecuador: Regiones empleadas para la Colección 3.0 de MapBiomas Ecuador(Elaboración Ecociencia).

Tabla 1. Biomas como parte del proyecto MapBiomas Ecuador. Áreas medidas empleando sistema de referencia de coordenadas SIRGAS 2000 (Elaboración Ecociencia).

Bioma	Km²	%	Provincias que forman parte de cada bioma (total o parcialmente)	
Amazonía	81.482	32	Orellana, Napo, Morona Santiago, Pastaza, Zamora Chinchipe, Sucumbios	
Andes	101.367	40	Azuay, Bolívar, Orellana, Cañar, Guayas, Chimborazo, Imbabura, Loja, Napo, El Oro, Pichincha, Los Ríos, Morona Santiago, Santo Domingo de los Tsáchilas, Tungurahua, Cotopaxi, Pastaza, Zamora Chinchipe, Carchi, Sucumbios, Esmeraldas	
Bosque húmedo tropical del Pacífico	22.050	9	Bolívar, Guayas, Imbabura, Manabí, Pichincha, Los Ríos, Santo Domingo de los Tsáchilas, Cotopaxi, Carchi, Esmeraldas	
Bosque seco ecuatorial	43.709	17	Azuay, Bolívar, Cañar, Guayas, Chimborazo, Loja, Manabí, El Oro, Los Ríos, Santa Elena, Esmeraldas	
Galápagos	7.992	3	Galápagos	
Total	256.605			

2.2.1. Bioma Bosque húmedo tropical del Pacífico

El bioma Bosque húmedo tropical del Pacifico cubre una superficie de 22.050 km², equivalente al 9% del área de estudio (Figura 2). Se encuentra en un rango de elevación de 0 a 300 m, caracterizado por condiciones cálidas y húmedas.

Este bioma incluye bosques de dosel cerrado, con árboles que pueden alcanzar los 30 m de altura y un sotobosque dominado por helechos y plantas de la familia Araceae. La diversidad arbórea es alta (con más de 100 especies por hectárea; pero menor que en el Biomas Amazonia).

La degradación antropogénica del hábitat en esta ecorregión es una de las más altas en el Ecuador; casi el 75% del bosque ha sido destruído por actividades humanas. Este bioma está ausente en las tierras bajas del suroccidente de Ecuador, donde predominan condiciones secas

Figura 3. Foto Bioma Bosque húmedo tropical del Pacífico. Foto: Jorge Vinueza.

2.2.2. Bioma Bosque seco ecuatorial

El bioma Bosque seco ecuatorial cubre una superficie de 43.709 km², equivalente al 17% del área de estudio (Figura 2). Se caracteriza por una combinación de condiciones cálidas y extremadamente secas. El promedio de precipitación anual puede no sobrepasar los 60 mm (en la localidad más occidental, Salinas, Provincia del Guayas). Se encuentra principalmente al margen de la costa, en el centro de Ecuador. En algunas áreas, las especies herbáceas introducidas para la ganadería han reemplazado a la vegetación nativa. En los hábitats más secos, predominan los cactus y otras plantas espinosas.

También forman parte de este bioma los bosques deciduos de la costa, caracterizados por condiciones más secas y menor densidad arbórea en comparación con los bosques siempre-verdes. Los árboles generalmente son menores a 20 m de alto y hay un sotobosque que puede ser denso y con plantas herbáceas abundantes. Algunas especies de árboles, como los ceibos, pierden sus hojas durante la época seca. El impacto humano en esta región ha sido severo. Se ha estimado que más del 60% de su área ha sido destruida por actividades humanas, especialmente agricultura y ganadería

Figura 4. Foto Bioma Bosque seco ecuatorial

2.2.3. Bioma Andes

El bioma Andes comprende las regiones denominadas "Andes" y "Amazonía alta", cubriendo una superficie de 101.367 km², equivalente al 40% del área de estudio (Figura 2). Este bioma se encuentra aproximadamente a partir de 300 m.s.n.m. de altitud en la vertiente del Pacífico y desde 400 m.s.n.m. hacia la Amazonía. Comprende los pisos bioclimáticos montano, montano alto, montano alto superior, subnival y nival (MAATE, 2013c) con altitudes que oscilan entre los 2300 y 5800 m.s.n.m. Las temperaturas en esta región raramente superan los 25°C. El relieve se caracteriza por cordilleras y serranías, con valles de origen glaciar y/o tectónicos, conformando un paisaje compuesto por cimas montañosas, calderas, cráteres, depósitos de lava y colinas altas entre las que se ubican llanuras y extensos valles. El deshielo de los glaciares que cubren las cimas de varios volcanes, se forman sistemas de lagunas, humedales y delgados cuerpos de agua que conforman las cabeceras de las cuencas de origen andino de la Cuenca Amazónica.

Esta región, conocida localmente como la "Sierra" (para diferenciarla de la región "Costa" y de la "Oriental"), se caracteriza por la presencia de bosques montanos, y otros ecosistemas no forestales, como arbustales y herbazales naturales, denominados comúnmente como "páramos", muchos de estos presentan características lacustres, inundables o subnivales, cuya fenología varía entre siempreverde, siempreverde estacional y semideciduo (MAATE, 2013c). Las zonas que limitan con la Amazonía reciben una fuerte influencia de humedad y hay una continuidad de cobertura boscosa. Conforme incrementa la altitud, disminuye el porte y la fisionomía de la vegetación cambia, llegando a ser nula en lugares como por ejemplo en arenales, roca expuesta, cicatrices de eventos eruptivos y glaciares.

Al norte del país, la cordillera Andina presenta una rama oriental y otra occidental, en cuyo centro se ubican valles interandinos, que están densamente poblados. Ambas ramas de la cordillera presentan una alta concentración de volcanes. Conforme se avanza de norte a sur, este patrón cambia, los valores de altitud máxima de la cordillera se reducen y el macizo occidental pierde altura considerablemente a la latitud del Golfo de Guayaquil, punto que corresponde a la división entre los Andes septentrionales al norte y los Andes centrales al sur, cuyos orígenes geológicos son diferentes (Cuesta et al. 2009).

Las laderas de los valles interandinos presentan alternancia entre períodos secos y húmedos con gran influencia de efecto de sombra de lluvia.

La zona andina de Ecuador ha sido ampliamente transformada por el desarrollo de zonas urbanas, infraestructura y, debido a la calidad de sus suelos, por la expansión de usos agropecuarios. En parte de estas zonas transformadas, actualmente se presentan bosques de especies introducidas, establecidas con fines comerciales o estéticos (principalmente de eucalipto Eucalyptus spp y pino Pinus spp).

Figura 5. Foto Bioma Andes

2.2.4. Bioma Amazonía

El bioma Amazonía comprende la región "Amazonía baja", que cubre una superficie de 81.482 km², equivalente al 32% del área de estudio (Figura 2). Comprende las estribaciones de la cordillera Andina y zonas de transición a tierras bajas de la Amazonía, donde se encuentran los pisos bioclimáticos piemontano, montano bajo y montano (MAATE, 2013c) con altitudes que oscilan entre los 700 y 2300 m.s.n.m. aproximadamente. Su relieve es piedemonte y cordillera, caracterizado por terrenos escarpados con pendientes empinadas y quebradas profundas. Debido a su topografía, los suelos de las estribaciones sufren deslizamientos de tierra frecuentes, los cuales se ven exacerbados por procesos antropogénicos como deforestación y erosión del suelo.

Son zonas hiper húmedas, caracterizadas por Iluvia intensa y casi constante, nubosidad permanente y bajas temperaturas. Dada la influencia orográfica de la zona, estos ecosistemas captan grandes volúmenes de agua de la neblina que en ellos se acumula (fenómeno conocido como precipitación horizontal o lluvia incidental), lo que ha llevado a que los bosques de esta ecorregión, o "bosques montanos de los Andes del Norte" (Cuesta et al. 2009) sean conocidos como 'bosque pluviales', 'bosques de niebla' o 'de neblina'. El porte promedio de estos bosques oscila entre los 20 a 30 metros, y su fenología es siempreverde. Los valores de humedad se reducen latitudinalmente en la región Amazonía Alta, alcanzando sus niveles más bajos en zonas fronterizas con Perú, donde se encuentran remanentes de bosques siempreverde estacionales de distribución restringida. En algunas porciones de esta

región también se encuentran arbustales y herbazales siempreverdes montanos, especialmente en zonas donde se alcanzan mayores valores de altitud como ramales de la cordillera de los Andes o en la cima de cordilleras propiamente amazónicas.

Los ecosistemas de este bioma cumplen un papel especialmente importante como reguladores del flujo hídrico, tanto a nivel local como regional. Además, en esta ecorregión se encuentran algunos de los bosques más biodiversos del planeta. Sin embargo, aquí también se concentran los ecosistemas más frágiles, en peligro de desaparecer debido a la actual y creciente transformación de bosques a pastizales, cultivos y poblados por efectos de la ocupación humana. En el caso de Ecuador, ciertas porciones de estos ecosistemas se encuentran dentro de áreas protegidas; sin embargo, donde no existen estas figuras de conservación, el grado de transformación es tan elevado que los bosques han quedado restringidos a laderas con topografía accidentada o a terrenos con suelos no aptos para la agricultura.

La región Amazonía Baja comprende el piso bioclimático de tierras bajas de la Amazonía ecuatoriana (MAATE, 2013c), con altitudes entre los 700 y 100 m.s.n.m. aproximadamente. Su relieve incluye piedemonte periandino, penillanura y llanura, cuya topografía varía entre zonas de mesetas y colinas medianas a planicies y terrazas. Debido a su topografía y de abundantes precipitaciones, esta región es susceptible a inundaciones, ya sea de forma estacional o permanente. Se caracteriza por la predominancia de bosques densos siempreverdes tropicales de tierras bajas, algunos son inundables o están permanentemente inundados. Estos bosques presentan, portes que superan los 30 metros, y están acompañados por herbazales lacustre-riparios.

Figura 6. Foto bioma Amazonía

2.2.5. Bioma Galápagos

El bioma Galápagos cubre una superficie de 7.992 km2, equivalente al 3% del área de estudio (Figura 2). Se encuentra ubicado en el Océano Pacífico a 972 km. de la costa continental del Ecuador, con un rango de elevación de 345 y 1707 m.s.n.m.. Está formado por el archipiélago de Galápagos constituido por 13 islas de origen volcánico y con una superficie total de 8.010 km² (Consejo de Gobierno del Régimen Especial de Galápagos, 2015).

El clima de las Islas Galápagos está determinado casi en su totalidad por las corrientes oceánicas, que a su vez están influenciadas por los vientos alisios que empujan las corrientes. Incluye una época caliente entre enero y abril que fluctúa entre los 26°C y 28°C, y una época fría durante el resto del año con temperaturas menores a los 24°C, registrándose en ciertos sitios del oeste temperaturas de 14°C (Consejo de Gobierno del Régimen Especial de Galápagos, 2015).

Figura 7. Foto Bioma Galápagos

3. Iniciativas de mapeo de cobertura y uso del suelo a escala nacional

Las iniciativas más recientes a nivel nacional de carácter oficial y no oficial de mapeo de la cobertura vegetal y uso del suelo en Ecuador, se resumen en la Tabla 2 y se detallan en el Anexo 1.

Tabla 2. Datos cartográficos de cobertura vegetal y uso del suelo existentes para Ecuador (Elaboración Ecociencia).

Мара	Referencia	Descripción	Escala	Año mapeado
Mapa de Ecosistemas del Ecuador Continental	MAATE, 2013	Distribución espacial de los ecosistemas remanentes al 2012 del Ecuador continental para áreas con cobertura natural.	1:100.000	2012
Mapa de Cobertura y Uso de la Tierra	MAGAP, SIGTIERRAS, IEE 2009-2015	Información detallada de los sistemas productivos, cobertura del suelo, tamaño de la parcela, y temporalidad del cultivo.	1:25.000	Entre 2009 a 2015, dependiendo del cantón
Mapas de Cobertura y Uso de la Tierra (CUT) del Ecuador Continental	MAATE, MAGAP, 2016 MAATE, MAGAP, 2017 MAATE, MAGAP, 2019 MAATE, MAGAP, 2023 MAATE, MAGAP, 2023	A un 1er nivel mapea las 6 clases definidas por el IPCC (bosque, tierra agropecuaria, vegetación arbustiva y herbácea, cuerpo de agua, zona antrópica y otras tierras). A un 2do nivel define a mayor detalle 16 clases de cobertura y uso de la tierra.	1:100.000	1990, 2000, 2008, 2014, 2016, 2018, 2020, 2022

Mapa de Cobertura y Uso de la Tierra y Sistemas Productivos Agropecuarios del Ecuador Continental	MAG, 2021	Información detallada de los sistemas productivos, cobertura del suelo, tamaño de la parcela, y temporalidad del cultivo. Versión editada por el Ministerio de Agricultura y Ganadería en el año 2020.	1:25.0000	Entre 2009 a 2015, editado a 2020
Metodología para mapear la cobertura de vegetación nativa e invasora en archipiélagos: Un ejemplo de las Islas Galápagos.	Rivas et al., 2018, Universidad San Francisco de Quito.	Información detallada sobre metodología para mapear la vegetación y evaluar la invasión de especies en el Parque Nacional Galápagos. Identificación de ecosistemas nativos y especies invasoras. Se destaca la vulnerabilidad de los bosques deciduos y amenazas en ecosistemas de alta montaña.	1:75.000	2015 y 2016
Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 2000-2017 de la Amazonía	MapBiomas Amazonía, 2019	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 2000 a 2017, generados a partir de imágenes satelitales Landsat clasificados mediante árboles de decisión empíricos.		Anual, 2000 a 2017
Colección 2 de Mapas anuales de Cobertura y Uso del Suelo 1985-2018 de la Amazonía	MapBiomas Amazonía, 2020	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 1985 a 2018, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2018
Colección 3 de Mapas anuales de Cobertura y Uso del Suelo 1985-2020 de la Amazonía	MapBiomas Amazonía, 2021	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 1985 a 2020, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2020
Colección 4 de Mapas anuales de Cobertura y Uso del Suelo 1985-2021 de la Amazonía	MapBiomas Amazonía, 2022	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 1985 a 2021, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2021
Colección 5 de Mapas anuales de Cobertura y Uso del Suelo 1985-2022 de la Amazonía	MapBiomas Amazonía, 2023	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 1985 a 2022, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2022
Colección 6 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 de la Amazonía	MapBiomas Amazonía, 2024	Mapas anuales de cobertura y uso del suelo de la Amazonia para el periodo 1985 a 2023, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2023
Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 del Ecuador	MapBiomas Amazonía, 2023	Mapas anuales de cobertura y uso del suelo del Ecuador para el periodo 1985 a 2023, generados a partir de imágenes satelitales Landsat clasificados mediante el algoritmo Random Forest en Google Earth Engine.		Anual, 1985 a 2023

4. Detalles metodológicos aplicados durante la Colección 3.0 de MapBiomas Ecuador

La Colección 3.0 de Mapas Anuales de Uso y Cobertura de Ecuador fue generada con una metodología estandarizada y compartida por toda la red MapBiomas.

4.1. Generación de mosaicos anuales

El primer paso en la generación de mapas de cobertura y uso es la construcción de mosaicos anuales, formados a partir de imágenes satelitales capturadas por el **proyecto Landsat**, para ello, la iniciativa MapBiomas Ecuador empleó dos métodos:

1. Para el área dentro del límite RAISG: los mosaicos fueron procesados a partir de una grilla uniforme basada en la Carta Internacional del Mapa Mundial al Millón (escala 1:250.000), donde el área de las mismas cubre un total de 1°30' de longitud por 1° de latitud. En función de esta división, 16 cartas unitarias abarcan la Amazonía ecuatoriana. Sin embargo, en vista de la estacionalidad de los tipos de coberturas que se buscaba mapear se vio la necesidad de subdividir ciertas cartas, para lo que se empleó los límites de las regiones Andes, Amazonía Alta y Amazonía Baja (Figura 8), totalizando 27 unidades o "carta-región" (Tabla 3).

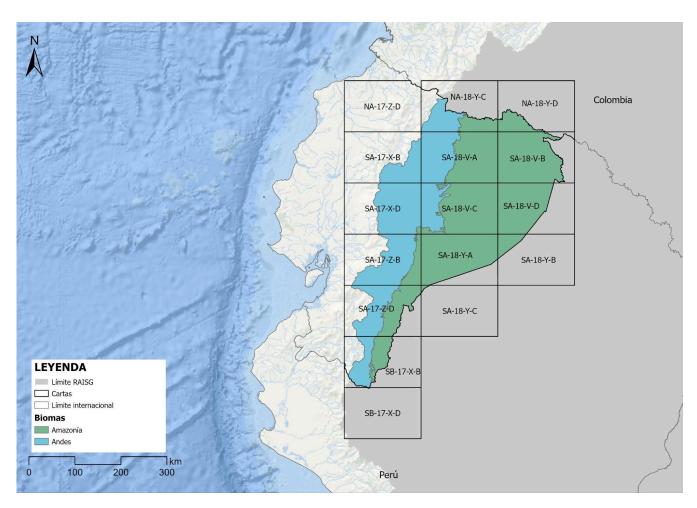


Figura 8. Cartas para límite RAISG (Elaboración Ecociencia).

Tabla 3. Cantidad de mosaicos anuales procesados por región para el área dentro del límite RAISG (Elaboración Ecociencia).

País Región		Cartas por región	Mosaicos parametrizados y procesados para la serie temporal 1985-2024
	Andes	8	294
Ecuador	Amazonía Alta	10	430
	Amazonía Baja	9	321
Total		27	1045

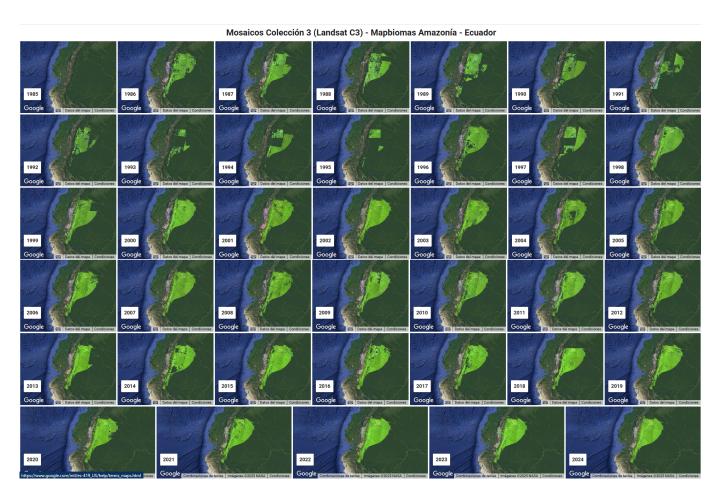


Figura 9. Mosaicos anuales 1985-2024 de la Colección 3.0 de MapBiomas Ecuador dentro del límite RAISG (Elaboración Ecociencia).

2. Para el área fuera del límite RAISG: la unidad de referencia utilizada para la construcción de los mosaicos fue la cuadrícula de path y row. Todo el territorio ecuatoriano, tanto continental como insular, se encuentra cubierto por 17 path y row. La Tabla 4 resume la cantidad correspondiente por región.

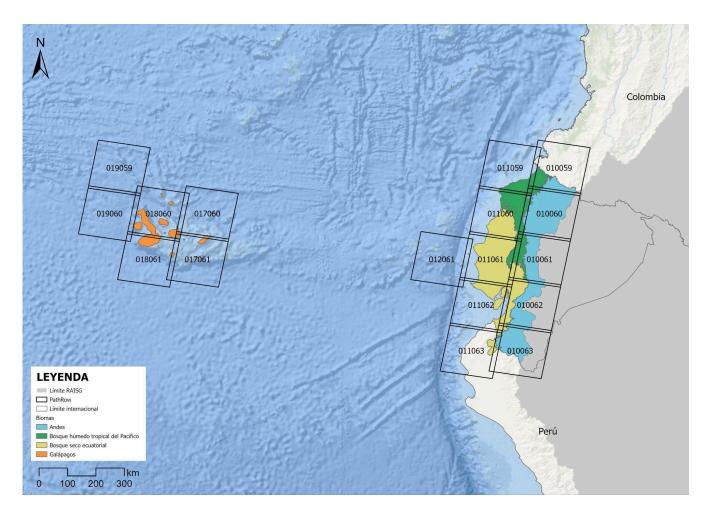


Figura 10. PathRows No RAISG Ecuador (Elaboración Ecociencia)

Tabla 4. Cantidad de mosaicos anuales procesados para el área fuera del Límite RAISG(Elaboración Ecociencia).

País	Bioma	Escenas por bioma	Mosaicos parametrizados y procesados para la serie temporal 1985-2024
Ecuador	Andes, Bosque húmedo tropical del Pacífico y Bosque seco ecuatorial	11	398
	Galápagos	6	186
Total		17	584

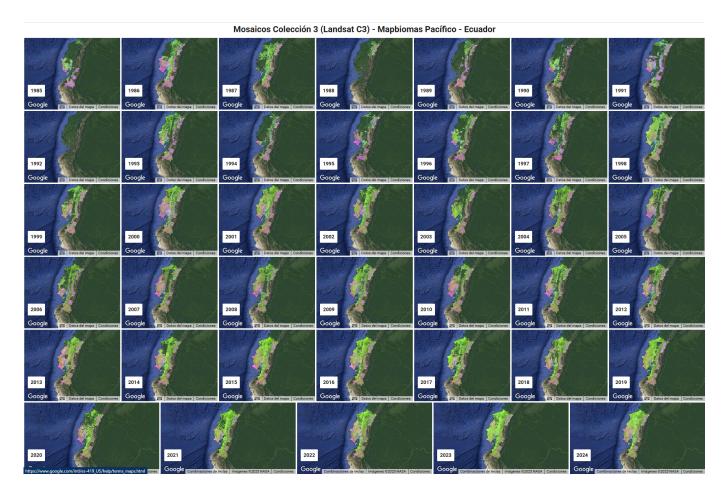


Figura 11. Mosaicos anuales 1985-2024 de la Colección 3.0 de MapBiomas Ecuador fuera del límite RAISG (Elaboración Ecociencia).

Tanto dentro como fuera del límite RAISG, a través de Google Earth Engine, se evaluó visualmente cada imagen satelital adquirida durante el período 1985-2024 y disponible en la Colección 2 del <u>catálogo de imágenes Landsat</u>. Esta colección de imágenes fue filtrada empleando parámetros definidos individualmente para cada carta que incluyeron: umbrales de nubosidad, periodo de búsqueda de datos (ventana temporal) e inclusive la exclusión de imágenes específicas con una calidad insuficiente producto de: exceso de nubes, fallas en el sensor, fallas en el pre-procesamiento, entre otros factores . Las imágenes seleccionadas por año fueron reducidas a una imagen individual, o mosaico anual (composite de imágenes), empleando operadores llamados reductores, existentes en Google Earth Engine (Figura 12).

Mosaico de mediana: Para cada carta y por cada año, se conformó un mosaico de imágenes de Landsat de la serie 4, 5, 7, 8 y 9. Cada mosaico está compuesto por al menos 2 imágenes, donde la asignación del valor de cada píxel por banda en la composición se realiza utilizando el valor de la mediana del conjunto de imágenes seleccionadas. Esta operación se aplica sobre las bandas del espectro visible rojo, el infrarrojo cercano y el infrarrojo medio) tal como se representa en la Figura 12.

De esta manera, el píxel utilizado para la clasificación corresponde al valor de la mediana de la serie temporal. Por ejemplo, si para una carta el mosaico final está compuesto por imágenes obtenidas entre los meses de octubre a diciembre, con un porcentaje máximo de cobertura de nubes del 30%, para el resultado final primero se enmascaran las nubes o sombras remanentes y luego se usó el reductor estadístico de mediana para la construcción del mosaico final de interpretación.

Cada carta fue procesada individualmente usando el valor de la mediana entre las imágenes seleccionadas para cada año de la serie temporal 1985 - 2024. En la Figura 11 se presentan los mosaicos para el área continental del territorio ecuatoriano.

Debido a la falta de información en las colecciones de Landsat o por alta cobertura de nubes, persisten vacíos a lo largo de la serie temporal; este vacío de información se presentó temporalmente y con mayor énfasis a inicios de las serie entre los años 1985 a 1988 y 1992 a 1996, espacialmente en las áreas de alta montaña, como páramos y glaciares, y el Chocó biogeográfico; esta situación afectó los resultados en zonas de alta dinámica en el cambio de coberturas, donde la capacidad del método para subsanar estos vacíos fue insuficiente.

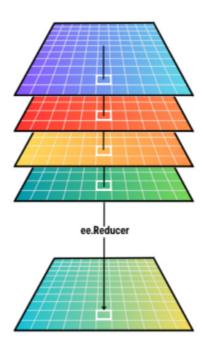


Figura 12. Efecto de la aplicación de un reductor a una colección de imágenes para componer un mosaico (composite) (Google, 20203).

En total, se definieron parámetros específicos para cada uno de los 40 años del periodo 1985 a 2024, para cada una de las 27 "cartas-región" y 27 escenas Landsat. Sin embargo, debido a vacíos de información en el catálogo de datos, se procesaron un total de 1045 mosaicos (Tabla 3 y 4) para el área dentro del límite RAISG de Ecuador y 584 mosaicos para el área fuera del límite RAISG. La parametrización permitió construir mosaicos anuales con la mejor calidad posible, la mayor cobertura de datos útiles y la menor cantidad de nubes o interferencias (Figura 11). En esta colección se usaron datos de Landsat 4, 5, 7, 8 y 9.

Dentro del Ecuador y tal como se demuestra en la Tabla 5, existe un total de 11805 imágenes satelitales Landsat a Reflectancia de Superficie (SR) pertenecientes a la Colección 2, que han capturado datos del país desde 1985; estas equivalen a más de 10 TeraBytes de información; dichas imágenes son analizadas, descartadas o procesadas como parte de la generación de los mosaicos anuales. Cabe mencionar que, en la presente colección, se incluye Landsat 9, un satélite relativamente nuevo y cuyos datos ya están disponibles en Google Earth Engine.

Tabla 5. Cantidad de imágenes satelitales Landsat que han capturado información del Ecuador hasta el 2024 (Elaboración Ecociencia).

	Lt4	Lt5	Lt7	Lt8	Lt9	Total
1980-1989	109	371	0	0	0	480
1990-1999	30	1048	90	0	0	1168
2000-2010	0	406	1956	0	0	2362
2010-2019	0	53	2461	2293	0	4807
2020-2023	0	0	946	1275	685	2906
2024	0	0	0	41	41	82
Total	139	1878	5453	3609	726	11805

 $^{^3}$ Tomado de: https://developers.google.com/earth-engine/guides/reducers_image_collection

A pesar de los esfuerzos por recuperar la mayor cantidad de datos útiles de buena calidad, los mosaicos resultantes no están libres de vacíos de información. Ecuador es un país donde la disponibilidad de datos satelitales provenientes de sensores ópticos como Landsat para el periodo 1985-2024 se ha visto afectada en gran medida por:

- La presencia continua de nubes, que limita la cantidad de píxeles útiles (observaciones libre de nubes), siendo las regiones de Bosque húmedo tropical del Pacífico y Bosque seco ecuatorial, Andes y Amazonía Alta las que presentan mayores limitaciones;
- Fallos en los equipos de recepción y grabación de datos satelitales de órbita baja dentro del alcance de cobertura de la antena de la Estación "Cotopaxi", que afectó permanentemente el registro de datos para el periodo 1991-1995, motivo por el cual para estos años no fue posible generar mosaicos para la mayoría de cartas.

4.1.1 Feature Space

Para cada píxel con datos útiles en cada mosaico anual, se calcularon 151 variables que conforman el feature space, el cual está compuesto por: bandas de reflectancia, índices derivados de las bandas espectrales, fracciones espectrales obtenidas de un análisis de mixtura espectral e índices de las fracciones espectrales (Anexo 4). Estas variables representan el insumo principal para el algoritmo de clasificación.

Se aplicaron los siguientes reductores estadísticos⁵ a las variables para obtener:

- Mediana: Cálculo de la mediana⁶ aplicada a todos los píxeles disponibles en el mosaico anual en esa ubicación.
- Mediana época seca: Cálculo de la mediana estadística aplicada a los píxeles del cuartil con los menores valores de NDVI (proxy de época seca).
- Mediana época lluviosa: Cálculo de mediana estadística aplicada a los píxeles del cuartil con los mayores valores de NDVI (proxy de época lluviosa).
- Amplitud: Extensión de la variación entre todos los píxeles disponibles en el mosaico anual.
- Desviación estándar: Desviación estándar de los valores de todos los píxeles disponibles en el mosaico anual para una ubicación determinada.
- Mínimo: Menor valor de todos los píxeles disponibles en el mosaico anual en una ubicación determinada.
- Máximo: Mayor valor de todos los píxeles disponibles en el mosaico anual en una ubicación determinada.
- Mínimo del periodo seco: Cálculo del menor valor de todos los píxeles disponibles de las imágenes del cuartil con los menores valores de NDVI (proxy de época seca).
- Mínimo del periodo lluvioso: Cálculo del menor valor de todos los píxeles disponibles de las imágenes del cuartil con los mayores valores de NDVI (proxy de época lluviosa).
- Máximo del periodo seco: Cálculo del mayor valor de todos los píxeles disponibles de las imágenes del cuartil con los menores valores de NDVI (proxy de época seca).
- Máximo del periodo Iluvioso: Cálculo del mayorvalor de todos los píxeles disponibles de las imágenes del cuartil con los mayores valores de NDVI (proxy de época Iluviosa).
- QMO del periodo seco: El valor más alto que tiene la banda en el índice evi2 en la estación seca.
- QMO del periodo lluvioso: El valor más alto que tiene la banda en el índice evi2 en la estación lluviosa.

Cada variable conforma una banda en el mosaico anual final. Adicionalmente, se incluyeron variables como pendiente, altitud, sombra, inundabilidad, entre otros, de tal modo que los mosaicos anuales finales están compuestos por 151 bandas (La lista completa de bandas se adjunta como Anexo 4).

4.2. Clasificación del Mapa General

La clasificación del mapa base o mapa general de cobertura y uso de la tierra de Ecuador se desarrolló siguiendo un protocolo metodológico estandarizado regionalmente (metodología MapBiomas), que se basa en el uso del algoritmo Random Forest de clasificación supervisada, a nivel de píxel. La totalidad del proceso fue ejecutado en el ambiente de geoprocesamiento en la nube

⁴ Instalada por la NASA y transferida en 1982 al CLIRSEN (actual Instituto Espacial Ecuatoriano), la Estación Cotopaxi tiene por objetivo la recepción, grabación y procesamiento de datos satelitales dentro de su alcance de recepción.

⁵ La aplicación de los reductores se realiza a nivel de píxeles, de modo que cada píxel en la salida se compone del cálculo de todos los píxeles de las imágenes de la colección en esa ubicación.

⁶ Mediana es el valor que separa la mitad superior de la mitad inferior de una muestra de datos o una población. <u>Documentación</u> de la herramienta en Google Earth Engine.

llamado Google Earth Engine (GEE), siguiendo una secuencia de pasos iterativos, los cuales se llevan a cabo cuantas veces sea necesario hasta alcanzar un producto de clasificación con calidad (Figura 13).

La cadena de procesamiento completa para la generación del mapa general de la Colección 3.0 de MapBiomas Ecuador se encuentra sintetizada en la Figura 13.

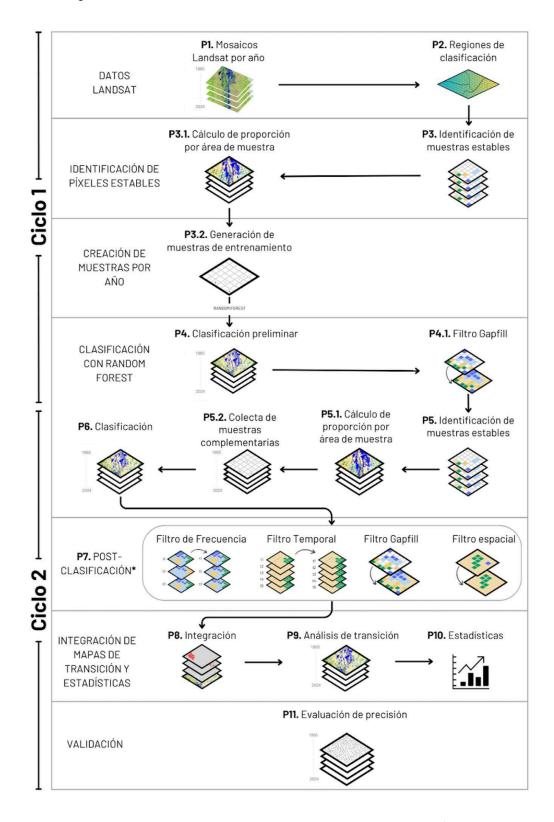


Figura 13. Cadena de procesamiento completa del Mapa General de la Colección 3.0 MapBiomas Ecuador (Elaboración Gaia Amazonas).

En nuestra experiencia, los factores determinantes en la calidad de la clasificación fueron:

- Entrenamiento y clasificación basado en el uso de unidades de mapeo que siguen criterios de la distribución espacial de los tipos de coberturas y usos (denominados regiones de clasificación),
- La distribución equilibrada de muestras de entrenamiento, tanto geográficamente como entre clases (donde la clase menos representada o de distribución restringida alcanza cerca al 12% del total de las muestras para una región),
- La identificación de un umbral o cantidad de árboles permitidos (si bien el incremento en la cantidad de árboles arroja mejores resultados, pasado un cierto punto decae la precisión),
- La cantidad de iteraciones (cada ronda adicional fortalece el producto final. Con cada iteración, el mapa de píxeles estables, a partir del cual se sortean las muestras de entrenamiento, gana precisión generando cada vez un set de muestras espectralmente menos ambiguas),
- La evaluación y selección de las variables que más aporta a la distinción de clases (si bien nuestros mosaicos anuales están compuestos por 151 bandas, se obtuvo mejores resultados cuando se excluyó aquellas bandas cuyos valores (variables de clasificación) aportan menos al clasificador, ajuste que se realizó individualmente para cada región de clasificación).

4.2.1 Regiones de clasificación

La secuencia de pasos de clasificación son aplicadas de modo independiente a cada unidad de mapeo o región de clasificación. En Ecuador se definieron veintinueve (29) regiones de clasificación (Figura 14, Tabla 5), siguiendo criterios de distribución espacial de los tipos de coberturas y usos⁷.

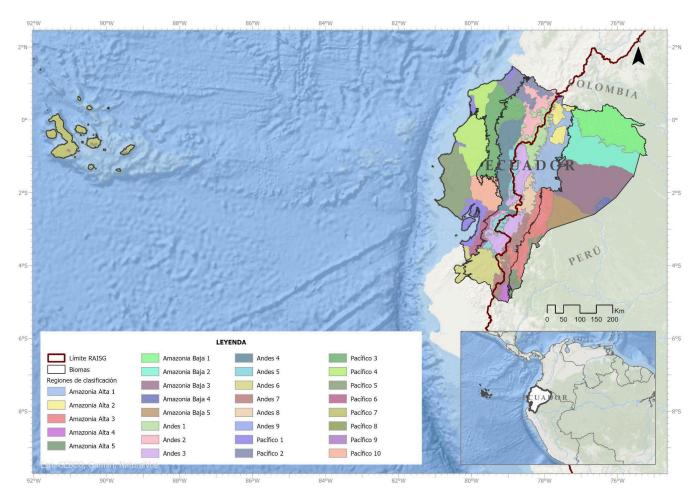


Figura 14. Regiones de clasificación de Ecuador para la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

⁷ Las regiones de clasificación fueron definidas siguiendo criterios de unidades ecológicas e hidrológicas basados en Mapa de Ecosistemas de Ecuador (MAATE, 2013) junto con la presencia o ausencia de intervención antropogénica y lecciones aprendidas en Colecciones pasadas.

Los motivos para separar el país en regiones de clasificación obedece a:

- Andes: Sus condiciones de mayor estacionalidad y constante cobertura de nubes determinan un periodo temporal de construcción del mosaico distinto al de la Amazonía. Se buscó fortalecer el mapeo de formaciones específicas a esta región (glaciares, páramos) y evitar confusión (dada la similitud espectral) entre las coberturas naturales no forestales con predominancia de especies herbáceas y áreas de uso como la agricultura y los pastos plantados.
- Amazonía Alta: Sus condiciones de vacío de información por nubosidad constante determinan la necesidad de establecer
 parámetros temporales de construcción del mosaico anual más amplios. Debido a su topografía y nubosidad, presenta un
 aumento de sombras que dificultan la clasificación de bosques en zonas de sombra y cuerpos de agua angostos.
- Amazonía Baja: Su fisiografía de llanuras y colinas ligeramente accidentadas facilitan el mapeo de sus bosques siempreverdes, cuerpos de agua anchos y zonas de uso agropecuario.
- Cuenca del Pacífico y Galápagos: tratándose de una primera colección para estas regiones, los criterios de separación de regiones se basaron en el uso de mapas secundarios de referencia (principalmente de distribución de ecosistemas y de uso del suelo). A partir de los aprendizajes y los resultados de mapeo obtenidos en esta 1ra colección, se refinarán las regiones de clasificación como estrategia para fortalecer el mapeo de colecciones futuras.

Tabla 6. Regiones de clasificación definidas en Ecuador. Áreas medidas empleando sistema de referencia de coordenadas Sphere Sinusoidal (Elaboración Ecociencia).

Nro,	Código	Región clasificación	Área (km2)	%	Región de mosaico
1	40101	Amazonía Alta 1	14058,34	5,36%	Amazonía
2	40102	Amazonía Alta 2	4596,82	1,75%	Amazonía
3	40103	Amazonía Alta 3	14410,30	5,49%	Amazonía
4	40104	Amazonía Alta 4	1815,47	0,69%	Amazonía
5	40105	Amazonía Alta 5	2590,40	0,99%	Amazonía
6	40201	Amazonía Baja 1	18886,06	7,20%	Amazonía
7	40202	Amazonía Baja 2	17766,97	6,77%	Amazonía
8	40203	Amazonía Baja 3	23756,79	9,05%	Amazonía
9	40204	Amazonía Baja 4	1215,02	0,46%	Amazonía
10	40205	Amazonía Baja 5	7111,02	2,71%	Amazonía
11	40601	Andes 1	8437,38	3,22%	Andes
12	40602	Andes 2	6816,68	2,60%	Andes
13	40603	Andes 3	12807,03	4,88%	Andes
14	40604	Andes 4	12021,39	4,58%	Andes
15	40605	Andes 5	5917,19	2,25%	Andes
16	40606	Andes 6	10980,95	4,18%	Andes
17	40607	Andes 7	6182,68	2,36%	Andes
18	40608	Andes 8	4819,77	1,84%	Andes
19	40609	Andes 9	289,34	0,11%	Andes

20	40901	Pacífico 1	8397,56	3,20%	Pacífico
21	40902	Pacífico 2	7542,49	2,87%	Pacífico
22	40903	Pacífico 3	16434,79	6,26%	Pacífico
23	40904	Pacífico 4	17556,55	6,69%	Pacífico
24	40905	Pacífico 5	15189,03	5,79%	Pacífico
25	40906	Pacífico 6	4019,16	1,53%	Pacífico
26	40907	Pacífico 7	10690,86	4,07%	Pacífico
27	40908	Pacífico 8	285,92	0,11%	Pacífico
28	40909	Pacífico 9	87,93	0,03%	Pacífico
29	40910	Pacífico 10	7723,87	2,94%	Pacífico

4.2.2 Leyenda

MapBiomas emplea una leyenda común para todas sus iniciativas, de las cuales, Ecuador utiliza un subconjunto de clases que obedecen a la ocurrencia de las mismas en el país. La definición operativa de cada clase la puede encontrar en nuestra <u>página web</u>. Las clases mapeadas en Ecuador (Figura 15) para la Colección 3.0 de MapBiomas Ecuador son: Bosque (ID = 3), Bosque abierto (ID = 4), Manglar (ID = 5), Bosque inundable (ID = 6), Formaciones naturales no forestales inundables (ID = 11), Herbazal (ID = 12), Herbazales y arbustales andinos (ID = 81), Herbazales andinos inundables (ID = 82), Otra formación natural no forestal (ID = 13), Afloramiento rocoso (ID = 29), Mosaico de agricultura y pasto (ID = 21), Silvicultura (ID = 9), Banano (beta) (ID = 74), Infraestructura Urbana (ID = 24), Minería (ID = 30), Playa, dunia o banco de arena (ID = 23), Otra área antrópica sin vegetación (ID = 25), Otra área natural sin vegetación (ID = 68), Ríos, lagos u océano (ID = 33), Acuicultura (ID = 31), Glaciares (ID = 34) y No observado (ID = 27).

(ID12) Herbazal	
(ID81) Herbazales y arbustales andinos	
(ID82) Herbazales andinos inundables	The second secon
(ID29) Afloramiento rocoso	
(ID13) Otra formación natural no forestal	
(ID9) Silvicultura	of the supering the state of th
(103) SHVRUITUI	The second
(ID21) Mosaico de agricultura y pastos	
(ID21) Mosaico de agricultura y pastos	

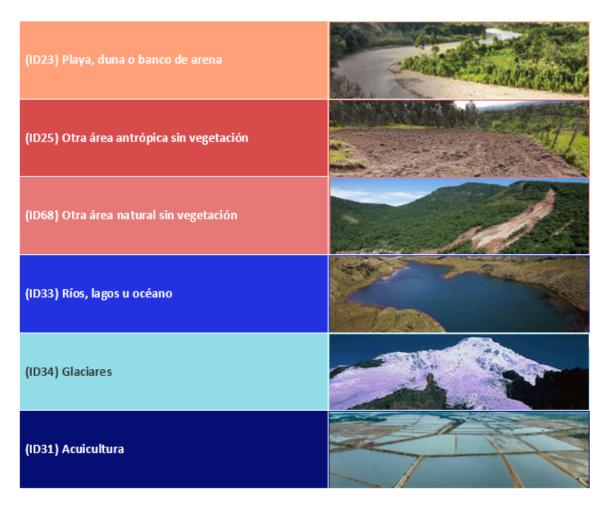
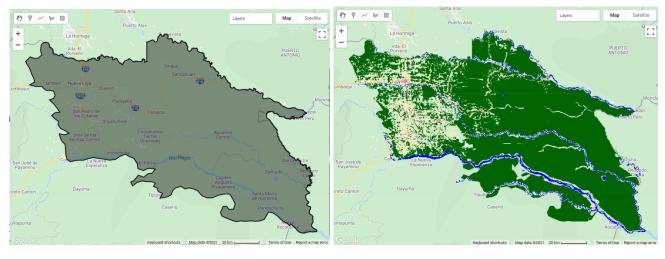


Figura 15. Clases mapeadas en la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

Las clases de la leyenda de la Colección 3.0 de MapBiomas Ecuador agrupan a las formaciones vegetales del Mapa de los Ecosistemas de Ecuador (MAATE, 2013a), del Mapa de Cobertura y Uso de la Tierra (MAATE, 2014) y de Ecosistemas de Galápagos ((Rivas et al., 2018). Los Anexos 5, 6 y 7 muestran su correspondencia (espacial y/o conceptual).

4.2.3 Rutinas de clasificación

La siguiente secuencia de pasos describe las rutinas que componen el método de clasificación. La secuencia fue implementada en javascript y ejecutada en el ambiente de procesamiento Google Earth Engine (GEE).


Debido a que para esta tercera colección se contó con información de colecciones pasadas para el territorio nacional dentro del límite RAISG (la cuenca amazónica) y fuera de la cuenca amazónica, se debió aplicar la siguiente rutina para estas dos regiones, las cuales se describen a continuación:

Para las regiones dentro del límite RAISG se contó con el mapeo de las Colecciones 1 a 6 de MapBiomas Amazonía y para fuera del límite RAISG se contó con el mapeo de la Colección 2, que fueron los insumos para la obtención de este mapa. Por ello, la secuencia repetida para cada región de clasificación de modo independiente, consistió en los siguientes pasos, ajustando los parámetros ⁸ hasta alcanzar una clasificación de calidad satisfactoria.

1. Se identificaron los píxeles que mantuvieron de modo estable una misma clase a lo largo de la serie de 39 años (1985-2023) en los mapas de la Colección 6 de MapBiomas Amazonía y de 39 años (1985-2023) para la Colección 3 de MapBiomas Ecuador. A partir de esta información se generó un mapa de píxeles estables para cada una de las clases de la leyenda. El mapa fue inspeccionado visualmente y corregido manualmente. La corrección manual incluyó 1) la exclusión de

⁸ Los parámetros empleados para cada región se detallan en la sección 3.4.3 "Parámetros de clasificación".

- píxeles que mediante inspección visual de las imágenes Landsat se identificó que no fueron estables, y 2) la reasignación (reclasificación) de píxeles equivocados.
- 2. Dentro del ámbito del mapa de píxeles estables, se sortearon puntos (Figura 16c) o localidades de entrenamiento. Para cada una se extrajo los valores de cada variable que componen el feature space (151 valores por cada localidad, uno por cada variable; ver sección 4.1 Generación de mosaicos anuales y sección 4.1.1 feature space). Estos valores describen espectralmente los tipos de coberturas que se busca clasificar y por lo tanto representan las muestras para el entrenamiento del algoritmo de clasificación supervisada Random Forest.
- 3. De la totalidad de píxeles estables se obtuvo una muestra de puntos por sorteo aleatorio. El sorteo fue balanceado y estratificado, con lo cual se buscó que la cantidad de muestras obtenidas por clase sea proporcional a la extensión conocida de cada clase (estimada a priori para cada región). En esta fase, la/el intérprete evaluó la correcta distribución espacial de las muestras, la distribución de puntos por clase y ajustó los parámetros (Tabla 6) para asegurar un equilibrio en el muestreo. Tras varias rondas de evaluación, se identificó que los mejores resultados se obtuvieron cuando el sorteo aseguraba que por entre 10% y 15% de la muestra total corresponde a puntos de la clase menos abundante. De considerarse necesario, se colectó muestras adicionales, denominadas "muestras complementarias", para fortalecer la clasificación de clases poco representadas o cuya clasificación requería ser fortalecida.

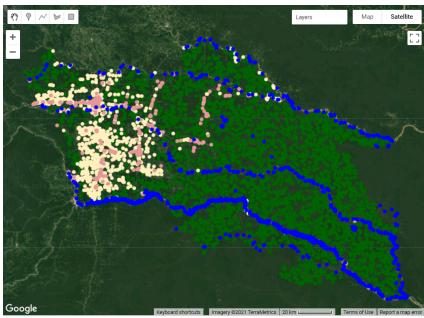


Figura 16. Ejemplo de sorteo de puntos de muestreo de entrenamiento para una región de clasificación de la Amazonía ecuatoriana. a) Límite de la región de clasificación 40201 "Amazonía Baja 1". b) Mapa de píxeles estables para sorteo de puntos de muestreo. c) Puntos de muestreo sorteados en la región 40201 (Elaboración Ecociencia).

- 4. Otro elemento que determina la calidad de la clasificación es la cantidad de árboles que el clasificador emplea para solucionar la clasificación. Tras varias pruebas, se identificó que 120 árboles resultó ser el número óptimo, valor que se estandarizó para todas las regiones (Tabla 6). Valores menores representan disminuciones en la precisión de la clasificación, mientras que valores mayores no representan ganancias en calidad y demandan más recursos de procesamiento.
- 5. Se generó una clasificación para cada año de la serie temporal (1985-2024). La clasificación resultante representa el producto culminante de la ronda de clasificación, listo para pasar a la fase de post-clasificación (ver sección 3.4.4) y posteriormente a la fase de integración (ver sección 3.6).
- 6. Si bien el proceso de clasificación puede ser iterado (repetido) tantas veces el/la intérprete considere necesario hasta alcanzar un producto satisfactorio, para la Colección actual adoptamos la estrategia de corregir los pasos 1 y 2 cuantas veces fuera necesario, con lo cual se redujo la cantidad de productos intermedios que requieren de almacenamiento físico.
- 7. Cabe destacar un paso adicional que favorece la calidad de la clasificación: a partir de un diagnóstico del aporte de las 151 variables en la separabilidad de las clases, se filtró la cantidad de variables disponibles para el clasificador, de tal modo que en el entrenamiento definitivo del clasificador se empleó únicamente la información de las variables más determinantes (es decir, se excluyeron aquellas variables que menos aportaron a la separabilidad de clases). Esta reducción de dimensionalidad (feature space) permitió adecuar el uso de las variables más significativas acorde a las formaciones naturales y tipos de uso del suelo específicos de cada región. Las variables seleccionadas para cada región se detallan en la Tabla 7.
- 8. Esta colección se apoyó en el uso de imágenes Planet para inspeccionar y mejorar la calidad de los mapas, y el uso de datos de altura del dosel derivados de GEDI (Dubayah, 2021; Potatov et. al., 2021) para eliminar zonas con baja probabilidad de ser bosques. En varias regiones se adoptó la estrategia de emplear los mapas corregidos de las Colecciones 1 y 1 para excluir zonas que ya habían sido corregidas en las colecciones anteriores. Estas correcciones permitieron la mejora del pool de datos de entrenamiento.

4.2.4 Parámetros de clasificación

Tabla 7. Parámetros de muestreo y número de árboles de decisión empleados por región de clasificación (Elaboración Ecociencia).

						Parámetros para muestreo estratificado		Muestras estables exportadas		
Bioma	Código región	Cantidad de iteraciones	Iteración	Muestra máxima	Muestra mínima	Muestra de la clase menos representada	Tamaño de muestra final	Número de árboles Random Forest		
	40101	1	1	3000	500	500 (10,10%)	4950	120		
	40102	1	1	2100	350	350 (7,52%)	4653	120		
	40103	1	1	3000	400	400 (16,30%)	2454	120		
	40104	1	1	1000	200	200 (10,79%)	1853	120		
Amazonia	40105	1	1	1200	150	150 (13,27%)	1130	120		
ATTIGEOTTIG	40201	1	1	3500	550	550 (12,26%)	4487	120		
	40202	1	1	4000	1000	1000 (13,15%)	7605	120		
	40203	1	1	6000	1000	1000 (16,85%)	5935	120		
	40204	1	1	1150	120	120 (9,55%)	1256	120		
	40205	1	1	4000	200	200 (4,21%)	4750	120		

	40601	1	1	2000	450	450 (10,95%)	4109	120
	40602	1	1	2100	500	500 (11,97%)	4177	120
	40603	1	1	1000	150	150 (9,72%)	1543	120
	40604	1	1	6000	900	900 (10,55%)	8532	120
Andes	40605	1	1	1000	200	200 (9,29%)	2154	120
	40606	1	1	1000	200	200 (11,02%)	1815	120
	40607	1	1	1000	200	200 (10,91%)	1833	120
	40608	1	1	1500	500	500 (11,73%)	4261	120
	40609	1	1	1500	500	500 (14,86%)	3365	120
	40901	1	1	1800	600	600 (17,83%)	3365	120
	40902	1	1	4000	500	500 (8,78%)	5697	120
	40903	1	1	3000	500	500 (12,56%)	3980	120
Pacífico	40904	1	1	4000	200	200 (4,67%)	4281	120
	40905	1	1	3000	150	150 (12,69%)	1182	120
	40906	1	1	4000	200	200 (4,82%)	4153	120
	40910	1	1	2000	250	250 (13,39%)	1867	120
	40907	1	1	300	120	120 (14,94%)	803	120
Galápagos	40908	1	1	250	150	150 (14,29%)	1050	120
	40909	1	1	120	100	100 (20%)	500	120

 $\textbf{Tabla 8.} \ Variables \ m\'{a}s \ significativas \ identificadas \ por \ regi\'{o}n \ de \ clasificaci\'{o}n \ (Elaboraci\'{o}n \ Ecociencia).$

Bioma	Código región	Variables seleccionadas					
	40101	red_dry_max', 'evi2_wet', 'nir_wet_qmo', 'nir_wet', 'hallcover_median', 'nir_dry', 'ndvi_median', 'swir1_median', 'mndwi_max', 'swir1_dry_qmo', 'ndsi_median', 'blue_median', 'ndgb_median', 'ndgb_wet', 'nir_min', 'nir_median', 'ndmi_dry', 'nir_dry_qmo', 'ndmi_median', 'ndwi_gao_wet_qmo', 'ndwi_gao_wet_min', 'ndvi_stdDev', 'ndmir_wet', 'ndsi_min', 'pri_median', 'ndsi2_dry', 'ndsi2_max', 'pri_dry', 'ndsi2_min', 'red_dry', 'ndfi_wet', 'textG_median', 'swir2_wet_qmo', 'swir2_wet_max', 'swir2_wet_max', 'swir2_median', 'swir2_dry_qmo', 'swir1_wet_qmo', 'swir1_wet_max', 'swir1_wet_max', 'swir1_dry_max', 'swir1_dry, 'soil_median', 'shade_median', 'sefi_median', 'savi_median', 'savi_dry', 'red_wet', 'red_median', 'red_dry_qmo', 'ndgb_dry', 'wefi_wet', 'gcvi_dry', 'ndbi_median', 'gli_max', 'gcvi_wet', 'gcvi_median', 'green_wet_qmo', 'fns_stdDev', mndwi_dry', 'mndwi_median', 'fns_dry', 'mndwi_wet', 'ndbi_max', 'gli_min', 'evi2_median', 'green_dry_qmo', 'ndfi_dry', 'green_min', 'green_dry', 'gvs_median', 'ndbi_min', 'green_median',					
	40102	red_median','nir_median','savi_median','swir1_median','swir2_median','ndvi_median','swir2_dry_qmo','evi2_median',sa vi_dry','swir1_wet','swir2_wet_max','gcvi_wet','ndsi_median','ndvi_wet','savi_wet','nir_dry_qmo','mndwi_max','swir1_wet_qmo',swir1_dry_qmo','swir1_min',					
Amazonia	40103	mndwi_dry;'ndsi2_dry;'swir2_median;'swir2_dry_min;'ndbi_dry;'swir1_median;'ndwi_mcfeeters_median;'textG_median;'cai_max;'ndvi_wet;'ndwi_gao_wet_min;'mndwi_median;'ndbi_max;'ndwi_gao_wet_qmo;'ndbi_median;'ndbi_min;'ndwi_gao_wet_max;'ndwi_gao_dry_min;'ndfib_amp;'ndfib_median;'shade_median;'ndwi_gao_amp;'swir1_dry;'sefi_dry;'ndmir_wet;'blue_median;'ndvi_dry;'ndsi2_max;'red_min;'red_wet;'ndvi_median;'ndmir_stdDev;'ndwi_mcfeeters_amp;'savi_dry;'ndmir_median;'ndmir_max;'savi_median;'red_dry_max;'ndmi_dry'					
	40104	NA					

blue_median;'green_dry,'green_median;'green_min;'red_dry;'red_median;'red_min;'red_wet;'nir_dry,'nir_median;'nir_min;'nir_stdDev;'nir_wet;'swirl_dry;'swirl_median;'swirl_min;'swirl_wet;'swir2_dry;'swir2_median;'swir2_wet;'ndfi_dry;'ndfi_median;'ndfi_wet;'ndfib_median;'gv_amp;'gv_median;'gv_stdDev;'gvs_dry;'gvs_median;'gvs_wet;'shade_median;'fns_dry,'gcvi_dry,'gcvi_median;'gcvi_wet;'pri_dry,'pri_median;'evi2_amp;'evi2_dry,'evi2_median;'evi2_stdDev;'evi2_wet;'ndvi_amp;'ndvi_dry,'ndvi_median,'ndvi_stdDev;'ndvi_wet;'ndsi_median;'ndsi_min;'ndwi_gao_a mp;'ndwi_gao_dry,'ndwi_gao_median;'ndwi_gao_wet;'ndwi_mcfeeters_amp;'ndwi_mcfeeters_median;'savi_dry;'savi_median;'savi_stdDev;'savi_wet;'sefi_dry;'sefi_median;'wefi_amp;'wefi_stdDev;'wefi_wet;'nuaci_median;'hallcover_median;'textG_median;'cai_median;'cai_median;'ndbi_max;'ndbi_max;'gli_median;'gli_min;'mndwi_dry;'mndwi_max;'mndwi_median;'ndgb_dry;'ndgb_max;'ndgb_median;'ndgb_stdDev;'ndgb_wet;'ndmi_dry,'ndbi_max;'ndbi_median''ndbi_min;'ndgb_dry;'ndgb_max;'ndbi_median;'ndmir_median;'ndmir_min;'ndmir_stdDev;'ndmir_wet;'ndrb_min;'ndrb_min;'ndrb_wet;'ndsi2_dry,'ndsi2_median;'ndsi2_max;'ndsi2_min;'ndsi2_wet;'cloud_median;'cai_wet_min;'green_dry_qmo;'green_wet_min;'green_wet_qmo;'ndrwi_gao_wet_min;'ndwi_gao_wet_mo;'nir_dry_qmo;'red_dry_max;'red_dry_min;'red_dry_min;'swir2_drwet_max;'swir1_dry_max;'swir1_wet_min;'swir1_wet_min;'swir2_dry_min;'swir2_dry_min;'swir2_dry_min;'swir1_dry_min;'swir1_dry_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir2_dry_min;'swir2_dry_min;'swir2_dry_min;'swir1_dry_max;'swir1_dry_max;'swir1_dry_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir2_dry_min;'swir2_dry_min;'swir2_dry_min;'swir1_dry_max;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir2_dry_min;'swir2_dry_min;'swir1_dry_max;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'swir1_wet_min;'s

'ndmir_wet', 'ndsi2_dry', 'ndmi_median', 'nir_dry', 'ndwi_mcfeeters_median', 'ndwi_gao_wet_qmo', 'ndwi_gao_wet_max', 'ndwi_gao_wet', 'ndwi_gao_dry_min', 'ndwi_gao_amp', 'ndsi_min', 'ndvi_stdDev', 'ndsi_median', 'ndsi2_wet', 'nir_median', 'ndmir_max', 'ndsi2_max', 'ndmir_min', 'ndmir_stdDev', 'nir_dry_qmo', 'nir_min', 'sefi_median', 'wefi_stdDev', 'swir2_dry_qmo', 'swir1_wet_qmo', 'swir1_wet_max', 'swir1_wet_max', 'swir1_dry', 'shade_median', 'sefi_stdDev', 'savi_wet', 'nir_stdDev', 'savi_stdDev', 'savi_median', 'red_wet_max', 'red_wet', 'red_median', 'red_dry_max', 'red_dry, 'nir_wet_qmo', 'ndgb_dry', 'ndmi_max', 'ndsi2_min', 'wefi_wet', 'evi2_dry', 'mndwi_median', 'mndwi_dry', 'evi2_median', 'evi2_stdDev', 'hallcover_median', 'gvs_median', 'gv_median', 'gv_amp', 'gcvi_wet', 'green_wet_min', 'green_min', 'green_median', 'gli_min', 'mndwi_wet', 'green_dry_qmo', 'cai_wet_min', 'cai_median', 'ndfi_stdDev', 'cai_min', 'ndfib_amp', 'ndfi_median'

nir_wet', 'swir1_min', 'ndvi_wet', 'mndwi_max', 'ndsi2_median', 'evi2_wet', 'ndbi_median', 'gcvi_dry', 'swir2_min',

ndbi_dry', 'ndrb_wet', 'evi2_stdDev', 'swir2_wet_qmo', 'textG_median', 'ndmi_median', 'ndsi_min', 'ndsi_median', 'ndsi2_median', 'ndsi2_max', 'ndgb_median', 'ndrb_stdDev', 'ndrb_min', 'ndmir_wet', 'ndmir_max', 'shade_median', 'ndmir_stdDev', 'ndvi_dry', 'ndmir_min', 'ndmir_median', 'ndvi_amp', 'savi_wet', 'ndvi_median', 'red_dry_max', 'pri_median', 'pri_dry', 'red_dry_qmo', 'red_min', 'nir_wet_qmo', 'nir_wet', 'nir_stdDev', 'nir_min', 'nir_median', 'nir_dry_qmo', 'nir_dry', 'ndwi_mcfeeters_median', 'ndwi_mcfeeters_amp', 'red_wet', 'ndwi_gao_wet_min', 'ndwi_gao_wet_max', 'ndwi_gao_wet', 'red_wet_max', 'savi_dry', 'savi_median', 'ndvi_wet', 'ndgb_dry', 'red_dry_min', 'evi2_dry', 'gcvi_wet', 'evi2_wet', 'fns_dry', 'swir1_wet_min', 'swir1_wet_qmo', 'swir2_dry', 'gcvi_dry', 'swir2_dry_qmo', 'swir2_median', 'swir2_min', 'gcvi_median', 'swir2_wet', 'green_median', 'green_dry_qmo', 'green_dry', 'gli_min', 'swir2_wet_max', 'gli_max', 'evi2_median', 'gli_dry', 'ndbi_max', 'cai_median', 'swir1_dry_qmo', 'swir1_dry'

fns_dry, 'nir_median', 'nir_dry_qmo', 'swir2_median', 'ndvi_median', 'green_wet_min', 'green_min', 'nir_wet', 'nir_min', 'wefi_wet', 'gli_dry, 'green_median', 'ndbi_median', 'ndfi_dry, 'hallcover_median', 'gli_median', 'gli_min', 'blue_median', 'green_dry_qmo', 'green_dry', 'evi2_median', 'cai_min', 'nir_dry, 'ndwi_mcfeeters_median', 'red_dry, 'red_wet_max', 'swir1_dry_qmo', 'red_dry_max', 'swir1_median', 'textG_median', 'swir2_min', 'swir2_wet_qmo', 'swir2_wet_max', 'swir1_wet', 'gvs_median', 'mndwi_dry'

evi2_dry', 'evi2_median', 'shade_median', 'swir2_median', 'mndwi_median', 'mndwi_max', 'gv_median', 'nir_dry', 'nir_median', 'red_wet_max', 'evi2_wet', 'gcvi_dry', 'gli_max', 'green_dry_qmo', 'ndbi_min', 'gli_min', 'green_dry', 'fns_dry', 'cai_min', 'cai_wet_min', 'blue_median', 'cai_max', 'swir1_wet_min', 'red_dry', 'swir1_min', 'swir1_dry_qmo', 'swir2_wet_max', 'swir2_wet, 'swir1_median', 'swir2_dry_qmo', 'ndfi_median', 'ndbi_max', 'green_wet_qmo', 'gvs_wet', 'green_wet_min', 'hallcover_median', 'ndwi_gao_dry', 'ndsi2_max', 'ndsi2_median', 'ndsi2_dry', 'ndsi_min', 'ndsi_median', 'ndvi_median', 'ndvi_dry'

gvs_wet', 'ndfib_median', 'ndvi_dry', 'savi_wet', 'swirl_median', 'evi2_wet', 'swirl_wet', 'ndmi_dry', 'ndmi_median', 'savi_dry', 'ndwi_gao_wet_qmo', 'ndwi_gao_wet_min', 'ndwi_gao_wet_max', 'ndvi_median', 'ndwi_gao_wet', 'ndwi_mcfeeters_median', 'ndwi_gao_dry_min', 'ndwi_gao_dry', 'ndwi_gao_amp', 'ndvi_wet', 'nir_dry, 'nir_dry_qmo', 'ndsi2_wet', 'blue_median', 'ndsi2_median', 'ndsi2_max', 'ndsi2_dry', 'ndrb_min', 'ndmir_wet', 'ndmir_stdDev', 'ndmir_min', 'ndmir_median', 'ndsi_min', 'nir_wet', 'nir_median', 'nir_min', 'swir2_wet_qmo', 'swir2_wet_max', 'swir2_wet', 'swir2_min', 'swir2_median', 'swir2_dry_qmo', 'swir2_dry_min', 'swir1_wet_min', 'swir1_min', 'swir1_dry_max', 'swir1_dry', 'shade_median', 'sefi_median', 'savi_median', 'red_wet_max', 'red_wet', 'red_min', 'red_median', 'gvs_median', 'red_dry_min', 'red_dry_min', 'red_dry_max', 'pri_median', 'pri_dry', 'ndmi_max', 'wefi_wet', 'ndgb_wet', 'ndbi_median', 'gvs_median', 'hallcover_median', 'gv_median', 'ndgb_stdDev', 'evi2_median', 'green_wet_qmo', 'mndwi_median', 'mndwi_wet', 'ndbi_max', 'evi2_dry', 'ndbi_dry', 'green_min', 'green_dry', 'gcvi_wet', 'ndgb_max', 'gli_median', 'ndfi_wet', 'ndbi_min', 'cai_median', 'green_dry_qmo', 'ndfi_median', 'ndfi_dry', 'green_median', 'gcvi_median'

Andes

30

40105

y_qmo','swir2_wet_max','swir2_wet_qmo'

40201

40202

NA

40203

40204

40205

40601

	40602	gv_median', 'swirl_wet_max', 'nir_median', 'ndwi_gao_amp', 'shade_median', 'swirl_dry', 'nir_stdDev', 'gcvi_dry', 'mndwi_wet', 'swir2_wet_max', 'ndsi2_median', 'ndmir_min', 'ndmir_median', 'nir_dry', 'ndwi_mcfeeters_amp', 'ndwi_gao_wet_qmo', 'ndwi_gao_wet_max', 'ndwi_gao_wet', 'ndwi_gao_dry_min', 'ndwi_gao_dry', 'ndvi_wet', 'ndsi2_wet', 'ndwi_eamp', 'ndvi2_dry', 'ndvi_amp', 'ndsi2_max', 'nir_min', 'nir_wet', 'swirl_dry_qmo', 'wefi_stdDev', 'wefi_amp', 'swir2_wet_qmo', 'swir2_dry_qmo', 'swir2_dry_min', 'swir2_dry', 'swirl_wet, 'savi_wet', 'savi_stdDev', 'savi_dry', 'red_wet_max', 'red_wet', 'red_min', 'red_median', 'red_dry', 'ndmi_dry', 'ndsi2_min', 'wefi_wet', 'evi2_median', 'green_wet_qmo', 'green_median', 'green_dry_qmo', 'green_dry', 'gli_median', 'hallcover_median', 'gli_dry', 'ndbi_max', 'fns_dry', 'evi2_wet', 'evi2_stdDev', 'mndwi_median', 'ndfi_wet', 'cai_min', 'evi2_dry', 'evi2_amp', 'cai_max', 'ndfi_dry', 'ndgb_dry', 'cai_median'
	40603	NA
	40604	green_median', 'savi_wet', 'nir_wet_qmo', 'ndvi_wet', 'ndvi_median', 'ndsi_median', 'wefi_wet', 'cai_min', 'evi2_median', 'pri_median', 'nir_wet', 'nir_min', 'nir_median', 'nir_dry_qmo', 'nir_dry', 'ndwi_gao_wet', 'ndwi_gao_dry', 'ndwi_gao_amp', 'cai_wet_min', 'ndvi_amp', 'ndsi_min', 'ndsi2_max', 'ndrb_min', 'ndmir_wet', 'ndmir_min', 'ndmir_median', 'ndmir_max', 'ndmi_median', 'cai_median', 'red_dry', 'ndmi_dry', 'red_dry_max', 'wefi_amp', 'textG_median', 'swir2_median', 'swir2_dry_min', 'swir2_dry', 'swir1_wet_qmo', 'swir1_dry_qmo', 'swir1_dry_max', 'sefi_dry', 'cai_max', 'savi_stdDev', 'savi_median', 'red_wet_max', 'red_min', 'red_median', 'red_dry_min', 'ndmi_max', 'ndvi_dry', 'ndsi2_min', 'gcvi_median', 'green_wet_qmo', 'green_wet_min', 'green_min', 'evi2_dry', 'hallcover_median', 'mndwi_dry', 'gli_median', 'mndwi_wet', 'gli_max', 'gcvi_wet', 'gv_median', 'gcvi_dry', 'ndfi_median', 'ndbi_median', 'evi2_wet', 'fns_dry', 'ndfi_wet', 'ndfi_amp'
	40605	NA
	40606	NA
	40607	NA
	40608	green_median', 'nir_wet_qmo', 'ndwi_gao_wet_min', 'ndvi_wet', 'ndvi_dry', 'ndbi_max', 'green_wet_min', 'ndsi2_min', 'cai_wet_min', 'ndmi_dry', 'cai_median', 'ndwi_gao_wet_max', 'ndwi_gao_wet', 'ndwi_gao_median', 'ndwi_gao_dry_min', 'ndwi_gao_dry', 'cai_min', 'ndvi_median', 'evi2_wet', 'ndsi_min', 'ndsi_median', 'ndsi2_wet', 'blue_median', 'ndsi2_median', 'ndsi2_dry', 'ndrb_wet', 'ndrb_min', 'ndmir_wet', 'ndmir_median', 'ndmir_max', 'ndmi_median', 'ndwi_gao_wet_qmo', 'ndwi_mcfeeters_median', 'nir_dry_qmo', 'savi_wet', 'swir2_min', 'swir2_dry_min', 'swir2_dry_min', 'swir2_dry_min', 'swir1_wet_max', 'swir1_wet_max', 'swir1_dry_qmo', 'soil_median', 'savi_stdDev', 'nir_min', 'savi_median', 'red_wet', 'red_min', 'red_dry_min', 'red_dry_max', 'red_dry', 'pri_median', 'cai_max', 'nir_wet', 'ndmi_max', 'wefi_wet', 'mndwi_median', 'gli_dry', 'mndwi_max', 'mndwi_dry', 'gli_max', 'gvs_wet', 'ndbi_dry', 'gvs_median', 'gvs_dry', 'gli_min', 'green_wet_qmo', 'green_dry', 'evi2_dry', 'green_min', 'mndwi_wet', 'evi2_median', 'ndbi_median', 'ndbi_min', 'gcvi_median', 'gcvi_wet', 'ndfi_dry'
	40609	N/A
	40901	N/A
	40902	evi2_wet', 'ndvi_median', 'savi_wet', 'evi2_median', 'gv_median', 'shade_median', 'swir1_dry_qmo', 'evi2_dry', 'nir_wet', 'savi_median', 'nir_wet_qmo', 'nir_dry_qmo', 'swir1_dry', 'ndvi_wet', 'savi_dry', 'ndvi_dry', 'gcvi_median', 'swir1_min', 'ndwi_mcfeeters_median', 'wefi_wet', 'hallcover_median', 'nir_min'
	40903	shade_median', 'swirl_wet_max', 'swirl_wet', 'ndvi_wet', 'ndsi_median', 'green_wet_min', 'ndwi_mcfeeters_median', 'ndsi2_max', 'swir2_dry_min', 'mndwi_median', 'ndvi_dry', 'green_median', 'hallcover_median', 'red_wet_max', 'evi2_median', 'nir_dry', 'nir_min', 'swir2_wet_max', 'swir1_dry_qmo', 'mndwi_max', 'swir1_wet_qmo', 'ndbi_max'
Pacífico	40904	green_min', 'green_median', 'hallcover_median', 'gcvi_wet', 'red_min', 'swir2_min', 'red_wet_max', 'gcvi_median', 'nir_median', 'ndrb_wet', 'swir2_median', 'red_dry_qmo', 'mndwi_dry', 'swir1_wet_min', 'ndvi_wet', 'evi2_median', 'swir1_median', 'green_dry_qmo', 'evi2_dry', 'cai_wet_min', 'green_wet_min', 'green_wet_qmo', 'ndvi_median', 'mndwi_wet', 'gli_max', 'evi2_wet', 'red_wet', 'swir1_dry_max', 'ndvi_dry', 'ndmi_dry', 'green_dry', 'swir2_wet', 'red_median', 'swir2_wet_max', 'cai_median', 'ndwi_gao_wet_max'

	40905	green_median', 'nuaci_median', 'nir_min', 'red_median', 'swir2_dry', 'green_dry', 'nir_dry_qmo', 'savi_dry', 'red_wet_max', 'ndsi_median', 'green_wet_min', 'ndwi_mcfeeters_median', 'ndsi2_max', 'nir_dry', 'shade_median', 'swir2_dry_qmo', 'red_dry_min', 'ndvi_median', 'swir1_dry_max', 'green_min', 'red_dry_max', 'nir_median', 'ndsi_min', 'gcvi_dry', 'red_dry_qmo', 'gcvi_median', 'cai_max', 'ndvi_dry', 'hallcover_median', 'red_dry', 'savi_wet', 'swir1_median', 'green_dry_qmo', 'swir1_dry_qmo', 'green_wet_qmo', 'gcvi_wet', 'mndwi_dry', 'ndvi_wet', 'ndmir_median', 'red_min', 'mndwi_median', 'swir2_median', 'evi2_median', 'swir2_dry_min', 'red_wet', 'ndbi_max', 'swir1_wet', 'swir2_min', 'ndmi_dry', 'savi_median', 'swir1_wet_min', 'swir1_dry', 'ndsi2_median', 'ndsi2_dry', 'ndbi_dry', 'evi2_wet', 'swir1_wet_max', 'ndmi_median', 'ndwi_gao_wet_min', 'ndbi_median', 'ndsi2_wet', 'mndwi_max', 'ndrb_min', 'nir_wet_qmo', 'cai_median', 'textG_median', 'ndwi_gao_median', 'ndmi_max', 'swir2_wet', 'blue_median', 'ndwi_gao_dry_min', 'ndmir_min', 'swir2_wet_max', 'ndwi_gao_dry_min', 'ndmir_min', 'swir2_wet_max', 'ndwi_gao_dry_'nir_wet', 'cai_min', 'ndmir_min', 'swir2_wet_max', 'ndwi_gao_dry_'nir_wet_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_min', 'ndmir_min', 'swir2_wet_'nax', 'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nir_wet_'ndwi_gao_dry_'nax
	40906	'mndwi_wet', 'fns_dry', 'swirl_min', 'cai_wet_min', 'ndbi_min' red_min', 'nir_wet_qmo', 'evi2_dry', 'ndvi_dry', 'mndwi_median', 'savi_wet', 'gcvi_dry', 'shade_median', 'textG_median', 'savi_dry', 'gcvi_median', 'red_dry_qmo', 'hallcover_median', 'red_wet_max', 'swirl_dry', 'ndvi_wet', 'evi2_median', 'ndmi_dry', 'green_median', 'swir2_dry_min', 'swir2_wet_qmo', 'ndmir_min', 'swir1_wet_min', 'swir2_median', 'ndrb_wet', 'ndsi2_wet', 'green_min', 'mndwi_max', 'green_dry_qmo', 'cai_min', 'red_wet', 'ndmir_wet', 'swir1_wet', 'wefi_wet', 'swir1_dry_qmo', 'swir1_dry_max', 'swir1_median'
	40910	savi_dry', 'ndvi_wet', 'ndvi_median', 'gcvi_dry', 'ndsi_median', 'ndwi_mcfeeters_median', 'mndwi_median', 'red_median', 'ndsi_min', 'evi2_wet', 'swirl_wet', 'gcvi_median', 'ndvi_dry', 'swir2_wet_qmo', 'red_wet_max', 'nir_median', 'cai_min', 'evi2_dry', 'cai_max', 'ndrb_min', 'nuaci_median', 'gcvi_wet', 'hallcover_median', 'green_min', 'ndmir_max', 'swirl_dry_qmo', 'nir_dry', 'savi_median', 'mndwi_dry', 'ndmir_wet', 'evi2_median', 'ndmi_max', 'ndrb_wet', 'ndmi_dry', 'swir2_min', 'savi_wet', 'mndwi_max', 'swir2_wet', 'wefi_wet', 'ndmir_median', 'ndbi_max', 'red_dry_qmo', 'nir_wet_qmo', 'mndwi_wet', 'red_dry', 'ndsi2_wet', 'swir2_dry_min', 'ndwi_gao_wet_max', 'red_dry_max', 'cai_wet_min', 'red_min', 'green_wet_qmo', 'nir_dry_qmo', 'ndwi_gao_wet_min', 'pri_median', 'ndwi_gao_wet', 'ndwi_gao_median', 'swir1_median', 'ndsi2_median', 'swir1_wet_min', 'ndwi_gao_wet_qmo', 'swir1_min', 'ndbi_median', 'ndgb_median', 'shade_median', 'ndsi2_dry', 'gli_max', 'swir2_dry', 'cai_median', 'pri_dry', 'nir_min', 'swir1_dry_max', 'swir1_dry', 'gli_median', 'ndsi2_min', 'ndsi2_min', 'blue_median', 'ndmir_min', 'green_wet_min', 'ndbi_min', 'swir1_wet_qmo'
	40907	N/A
Galápagos	40908	swirl_median', 'savi_dry', 'gcvi_wet', 'ndvi_dry', 'nir_median', 'cai_min', 'evi2_median', 'nir_dry_qmo', 'swir2_dry_min', 'swir1_dry_max', 'swir2_median', 'hallcover_median', 'mndwi_median', 'swir1_wet', 'ndwi_mcfeeters_median', 'ndbi_min', 'ndvi_median', 'swir1_wet_qmo', 'savi_wet', 'red_median', 'ndvi_wet', 'nir_dry', 'textG_median', 'nir_wet_qmo', 'swir2_wet', 'red_median', 'swir1_win', 'swir1_dry_qmo', 'swir2_wet_max', 'mndwi_dry', 'ndsi_min', 'swir1_wet_min', 'nir_min', 'cai_max', 'evi2_wet', 'evi2_dry', 'ndmir_wet', 'red_dry', 'nir_wet', 'green_min', 'shade_median', 'ndsi2_dry', 'wefi_wet', 'green_wet_qmo', 'mndwi_wet', 'red_wet_max', 'cai_median', 'savi_median', 'swir2_min'
	40909	swirl_median', 'savi_dry', 'gcvi_wet', 'ndvi_dry', 'nir_median', 'cai_min', 'evi2_median', 'nir_dry_qmo', 'swir2_dry_min', 'swir1_dry_max', 'swir2_median', 'hallcover_median', 'mndwi_median', 'swir1_wet', 'ndwi_mcfeeters_median', 'ndbi_min', 'ndvi_median', 'swir1_wet_qmo', 'savi_wet', 'red_median', 'ndvi_wet', 'nir_dry', 'textG_median', 'nir_wet_qmo', 'swir2_wet, 'red_min', 'gcvi_median', 'swir1_wet_max', 'swir1_min', 'swir1_dry_qmo', 'swir2_wet_max', 'mndwi_dry', 'ndsi_min', 'swir1_wet_min', 'nir_min', 'cai_max', 'evi2_wet, 'evi2_dry', 'ndmir_wet, 'red_dry', 'nir_wet', 'green_min', 'shade_median', 'ndsi2_dry', 'wefi_wet', 'green_wet_qmo', 'mndwi_wet', 'red_wet_max', 'cai_median', 'savi_median', 'swir2_min'

4.3 Post-clasificación

La fase de post-clasificación consiste en la aplicación de distintos tipos de filtros cuyo propósito es la reducción de vacíos o inconsistencias de información y la comparabilidad de los mapas entre los distintos años de la serie temporal. Todos los filtros son aplicados a la clasificación resultante del proceso arriba descrito (ningún filtro es aplicado a los mosaicos Landsat).

Se utilizaron 4 distintos tipos de filtros. El proceso se llevó a cabo aplicando los filtros en un orden definido según las necesidades y condiciones de cada región, a criterio de los intérpretes, incluyendo la opción de utilizar un filtro en más de una ocasión. Esta flexibilidad representó un cambio en la metodología y redujo fuentes de error identificadas en colecciones pasadas. También se optó por la posibilidad de excluir de los efectos de cualquier filtro a clases y años específicos, seleccionados por los intérpretes.

Una descripción de cada herramienta se presenta a continuación:

4.3.1 Filtro para relleno de vacíos (GapFill)

Según la leyenda de MapBiomas, los píxeles que presentan ausencia de información debido a limitantes a su observación al momento de la adquisición de las imágenes satelitales son clasificados como "no observados" (ID = 27). Este filtro es especialmente útil en regiones como Ecuador, severamente afectadas por una persistente presencia de nubes que obstruyen la adquisición de

datos de sensores remotos ópticos como Landsat. El filtro de relleno o Gapfill reemplaza estos vacíos de información en la serie temporal, de tal modo que los píxeles carentes de un valor de clasificación asumen el valor conocido (clase) temporalmente más cercano (es decir, el último valor para el cual hubo una observación). Como efecto de este filtro, se obtiene una clasificación prácticamente sin vacíos (Figura 17). Se puede dar el caso de vacíos persistentes, lo cual ocurre cuando no se obtuvo ni una observación a lo largo de toda la serie temporal. Adicional, para el caso de Ecuador se trabajó en la posibilidad de excluir años que insertaban una mayor cantidad de ruido a la clasificación, es decir, no fueron utilizados para trasladar sus píxeles a los años cercanos; así mismo, también se pudo realizar una exclusión de clases, con ello, se generó un bloqueo que impidió traspasar ciertos errores que se producen en las clasificaciones pre-filtros.

Este filtro fue aplicado en todas las regiones del área de estudio de Ecuador y los parámetros empleados se resumen en la Tabla 9.

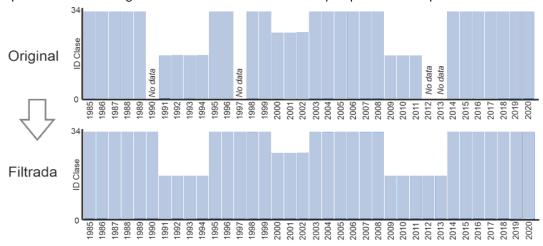


Figura 17. Funcionalidad del filtro Gapfill de la Colección 3.0 de MapBiomas Ecuador (Elaboración MapBiomas).

Tabla 9. Parámetros del filtro Gapfill definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

Bioma	Código región	Cantidad Iteraciones	Orden	Clases excluidas	Años excluidos	Motivo de aplicación repetida
	40101	1	t0tn_tnt0	NA	NA	
	40102	2	tnt0_t0tn	NA	1986, 1987, 1988, 1991, 1996, 2006, 2007, 2017, 2020	Exclusión de años
			t0tn_tnt0	NA	NA	
	40103	1	t0tn_tnt0	NA	NA	
	40404		t0tn_tnt0	NA	1986,1987,1989, 1996,1997	Exclusión de años
	40104	2	t0tn_tnt0	NA	NA	
	40105	2	t0tn_tnt0	21,33	1988,1990,1992	Exclusión de años y clases
AMAZONIA			t0tn_tnt0	NA	NA	
	40201	1	t0tn_tnt0	NA	NA	
	40202	1	t0tn_tnt0	NA	NA	
	40203	2	t0tn_tnt0	NA	1986,1987,1988,1989,1990,1991,1992, 1993,1994	Exclusión de años
			t0tn_tnt0	NA	NA	
	40204	1	t0tn_tnt0	NA	NA	
	40205	2	t0tn_tnt0	NA	1986,1996,1998,1999,2003,2005, 2008	Exclusión de años
			t0tn_tnt0	NA	NA	

	40601	2	t0tn_tnt0	33	NA	Exclusión de clases
	10001	۷	t0tn_tnt0	NA	NA	
	40602	2	t0tn_tnt0	33	NA	Exclusión de clases
	40002	2	t0tn_tnt0	NA	NA	
	40603	2	t0tn_tnt0	33	NA	Exclusión de clases
	40003	2	t0tn_tnt0	NA	NA	
	40404	2	t0tn_tnt0	33	NA	Exclusión de clases
	40604	2	t0tn_tnt0	NA	NA	
ANDES			t0tn_tnt0	11, 13, 12	1988, 1992, 1994, 1995,1985, 1986, 1987, 1989, 1990	Exclusión de años y clases
	40605	3	t0tn_tnt0	11	NA	Exclusión de clases
			t0tn_tnt0	NA	NA	
	40606	1	t0tn_tnt0	NA	NA	
			t0tn_tnt0	NA	1996,1997,1998,1999	Exclusión de años
	40607	2	t0tn_tnt0	11	NA	Exclusión de clase
			t0tn_tnt0	33	NA	Exclusión de clase
	40608	2	t0tn_tnt0	NA	NA	
	40609		t0tn_tnt0	33	NA	Exclusión de clase
		2	t0tn_tnt0	NA	NA	
			t0tn_tnt0	NA	1987,2008	Exclusión de años
	40901	2	t0tn_tnt0	NA	NA	
	40902		t0tn_tnt0	NA	2005,2006,2007,2008,2009,2010,2011, 2012,2013,2014,2015,2016,2017,2018, 2019,2020,2021,2022,2023,2024,2025	Exclusión de años
		3	t0tn_tnt0	NA	1985,1986,1987,1988,1989,1990,1991, 1992,1993,1994,1995,1996,1997,1998, 1999,2000,2001,2002,2003,2004	Exclusión de años
			t0tn_tnt0	NA	NA	
	40903	1	tnt0_t0tn	NA	NA	
PACÍFICO			tnt0_t0tn	11	NA	Exclusión de clase
	40904	3	t0tn_tnt0	11	NA	Exclusión de clase
			t0tn_tnt0	NA	NA	
			tnt0_t0tn	NA	NA	
	40905	2	t0tn_tnt0	NA	NA	
			tnt0_t0tn	11	NA	Exclusión de clase
	40906	3	tnt0_t0tn	11	1988,1989,2005,2007,2020,2022	Exclusión de años clases
			tnt0_t0tn	NA	NA	
	40910	1	t0tn_tnt0	NA	NA	
galápagos	40907	2	tnt0_t0tn	33	1989,1990,1991,1992, 1993,1995, 1996,1997,1998,1999, 2000,2001,2002,2003,2004, 2005,2006,2007,2008,2009, 2010,2011,2012,2013,2014, 2015,2016,2017,2018	Exclusión de años · clases

		t0tn_tnt0	NA	NA	
40908	2	t0tn_tnt0	NA	1990,1991,1996,2000,2002,2004,2007, 2011,2015,2018	Exclusión de años
		t0tn_tnt0	NA	NA	
40909	2	t0tn_tnt0	NA	1991,1993,1997,1998,1999,2000,2001, 2002,2004,2005,2006,2010,2011,2012, 2013,2014,2015,2017,2018,2021,2022	Exclusión de años
		t0tn tnt0	NA	NA	

4.3.2 Filtro temporal

Este filtro busca reducir vacíos de información, inconsistencias temporales, ruidos o errores de clasificación empleando el registro histórico en base a tres tipos de reglas (Figura 18):

- a. Reglas generales (RG), buscan corregir el dato del año central (T), en función de los valores de píxeles de años que le anteceden (T-1, T-2) y suceden (T+1, T+2). Esta regla modifica valores en las clasificaciones de los años 1986 al 2024. Pueden emplearse ventanas o períodos de tiempo de tres, cuatro y cinco años.
- b. Reglas de primer año (RP), corrige el valor del primer año (1985) con base en los valores de los siguientes dos años consecutivos.
- Reglas de último año (RU), corrige el valor del último año (2024) tomando en cuenta los valores de los dos años que le preceden.

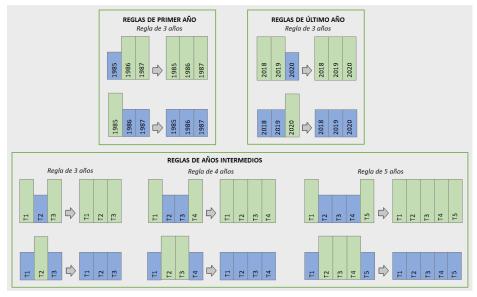


Figura 18. Funcionalidad del filtro temporal de MapBiomas Ecuador (Elaboración MapBiomas).

En Ecuador se aplicaron filtros temporales en todas las regiones de clasificación. Los parámetros de cada regla fueron definidos en función a las necesidades de cada región (Tabla 10):

- first3: orden de ejecución de las clases para la regla del primer año.
- last3: orden de ejecución de las clases para la regla del último año.
- middle3: orden de ejecución de las clases para las reglas de los 3 años intermedios.
- middle4: orden de ejecución de las clases para las reglas de los 4 años intermedios.
- middle5: orden de ejecución de las clases para las reglas de los 5 años intermedios.

Tabla 10. Parámetros del filtro temporal definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

Bioma	Código región	Orden reglas	Orden de ejecución	Clases/años excluidos
	40101	3, 4, 3, 5, 4, 3, Last, First, 3	var ordem_exec_first = [25,33,21,13] var ordem_exec_last = [21,33,13,25] var ordem_exec_middle = [21,3,33,25,13]	NA
	40102	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 21] var ordem_exec_last = [21, 25] var ordem_exec_middle = [33, 21, 3, 13, 25]	NA
	40400	middle3,middle4,middle5,last3,first,middl e3	var ordem_exec_first = [13, 3, 33,25, 11] var ordem_exec_last = [13, 21, 25,33, 13, 11] var ordem_exec_middle3 = [13,21, 3,25,33,11] var ordem_exec_middle4 = [13, 21, 3, 33, 25,13, 11] var ordem_exec_middle5 = [13, 21, 3, 33, 25,13, 11]	NA
	40103	middle3,middle5,middle4,last3,first,middl e3	var ordem_exec_first = [13, 3, 33,25, 11] var ordem_exec_last = [13, 21, 25,33, 13, 11] var ordem_exec_middle3 = [13,21, 3,25,33,11] var ordem_exec_middle4 = [13, 21, 25,3, 33, 13, 11] var ordem_exec_middle5 = [13, 21, 25, 3, 33, 13, 11]	NA
	40104	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 21] var ordem_exec_last = [21,25,3] var ordem_exec_middle = [21, 25, 3,33]	NA
		first,3,4,3,5,4,3,last	var ordem_exec_first = [13, 3, 25, 33] var ordem_exec_last = [13,25,33,3] var ordem_exec_middle = [13, 3, 25, 33]	21
		first,3,4,3,5,4,3,last	var ordem_exec_first = [13, 3, 25, 33] var ordem_exec_last = [13,25,33,3] var ordem_exec_middle = [13, 3, 25, 33]	21
AMAZONÍA	40105	first, 3,5,4,3,4,3,last	var ordem_exec_first = [25,21] var ordem_exec_last = [25,21] var ordem_exec_middle = [25,21]	NA
		first, 5,4,3,4,3,3,last	var ordem_exec_first = [13, 3, 25, 21,33] var ordem_exec_last = [13,25,21,33,3] var ordem_exec_middle = [13, 25, 21,3,33]	NA
		3, 4, 3, 5, 4, 3, Last, First	var ordem_exec_first = [25,33,21,13] var ordem_exec_last = [21,33,13,25] var ordem_exec_middle = [21,3,33,25,13]	NA
	40201	3,4,3,5,4,3,last,first	<pre>var ordem_exec_first = [3, 33, 13, 11] var ordem_exec_last = [25,33,21,13] var ordem_exec_middle = [21,33,13,25]</pre>	NA
		First	var ordem_exec_first = [3, 33, 13, 11]	NA
		First	var ordem_exec_first = [3, 33, 13, 11]	1985,1986
	40202	First	var ordem_exec_first = [3, 33, 13, 11]	1985
		3,4,3,5,4,3,first,last	<pre>var ordem_exec_first = [3, 33, 13, 11] var ordem_exec_last = [21,33,13,11] var ordem_exec_middle = [21,3,33,25,13,11]</pre>	NA
	40203	first,3,4,3,5,4,3,last	var ordem_exec_first = [21,25,3,33,13] var ordem_exec_last = [25, 21,3,13] var ordem_exec_middle = [21, 25, 3, 13,33]	NA
	10200	5,4,3,3,4,3,last	var ordem_exec_last = [13,11,25,21,33,3] var ordem_exec_middle = [13,11,25,21,33]	NA
	40204	first,Middle3,4,5,last	var ordem_exec_first = [13,25,3] var ordem_exec_last = [13,25,3] var ordem_exec_middle = [13,25,3]	NA

	ı	first,Middle3,4,5,last	var ordem_exec_first = [13,25,3] var ordem_exec_last = [13,25,3] var ordem_exec_middle = [13,25,3]	NA
	40205	last,middle5,4,3,middle3	var ordem_exec_last = [13,21,25,33] var ordem_exec_middle3 = [13,21,25,33,3] var ordem_exec_middle5 = [13,21,25,33,3]	1985,1986,1987,1988, 1989,1990,1991,1992, 1993,1994,1995, 1996,1997,1998,1999, 2000, 2001,2002,2003,2004, 2005,2006,2007,2008,2009, 2010,2011,2012,2013,2014
		first,middle3,middle4,middle5,last	var ordem_exec_first = [13, 21,25,33,3] var ordem_exec_last = [13, 21,25] var ordem_exec_middle3 = [13, 21,25,33,3] var ordem_exec_middle4 = [13, 21,25,33] var ordem_exec_middle5 = [13, 21,25,33]	1985,1986,1987,1988, 1989,1990,1991,1992, 1993,1994,1995, 1996,1997,1998,1999,2000, 2001,2002,2003,2004, 2005,2006,2007,2008,2009, 2010,2011,2012,2013,2014
		first	var ordem_exec_first = [3, 33, 12, 11, 13,34]	NA
	40601	3,4,3,5,4,3,last,first	var ordem_exec_first = [3, 33, 12, 11, 13,34] var ordem_exec_last = [21,33,12,13,11,34] var ordem_exec_middle = [21, 33, 11, 3, 12, 13, 34, 25]	NA
		last	var ordem_exec_last = [21,33,12,13,11,34,25]	2025
	40602	3,4,3,5,4,3,last,first	var ordem_exec_first = [3,12,11,21,25] var ordem_exec_last = [21,33,12,13,11] var ordem_exec_middle = [21, 33, 3, 12, 13,11, 25]	NA
	40603	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 13, 12, 21, 25, 33] var ordem_exec_last = [3, 13, 12, 21, 25, 33] var ordem_exec_middle = [3, 13, 12, 21, 25, 33]	NA
	40604	first,3,4,3,5,4,3,last	var ordem_exec_first = [11,13,3,12,21,33,25] var ordem_exec_last = [11,13,12,21,25,3,33] var ordem_exec_middle = [11,13,12,21,3,25,33]	NA
	40004	first,3,4,3,5,4,3,last	var ordem_exec_first = [11,13,3, 12,21,33,25] var ordem_exec_last = [11,13,12,21,33,25,3] var ordem_exec_middle = [11,13,12,25,21,3,33]	NA
ANDES	40605	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 12, 13, 11, 25, 21] var ordem_exec_last = [3, 12, 13, 11, 25, 21] var ordem_exec_middle = [3, 12, 13, 11, 25, 21]	NA
	40003	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 12, 13, 11, 25, 21,33] var ordem_exec_last = [3, 12, 13, 11, 25, 21,33] var ordem_exec_middle = [3, 12, 13, 11, 25, 21,33]	NA
	40606	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 13, 4, 21, 25] var ordem_exec_last = [21,25,3, 13, 4] var ordem_exec_middle = [25,21,3,13,4]	NA
	40000	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 13, 4, 21, 25] var ordem_exec_last = [21, 25,3, 13, 4] var ordem_exec_middle = [25,21,3,13,4]	NA
	40607	first,3,4,3,5,4,3,last	var ordem_exec_first = [3, 4, 13, 12, 11, 21, 25] var ordem_exec_last = [3, 4, 13, 12, 11, 21, 25] var ordem_exec_middle = [3, 4, 13, 12, 11, 21, 25]	NA
	40608	3,4,3,5,4,3,first,last	var ordem_exec_first = [3, 33, 13,12, 11] var ordem_exec_last = [21,25,33,13,12,11,3] var ordem_exec_middle = [21,3,33,25,12,13,11]	NA
		3,4,3,5,4,3	var ordem_exec_middle = [3]	NA
	40609	3,4,3,5,4,3,first,last	var ordem_exec_first = [3, 33, 13,12, 11] var ordem_exec_last = [21,25,33,13,12,11,3] var ordem_exec_middle = [21,3,33,25,12,13,11]	NA

		first,3,4,3,5,4,3,last	var ordem_exec_first = [13,11,4,3,25,21] var ordem_exec_last = [13,11,4,21,3,25] var ordem_exec_middle = [13,11,4,3,21,25]	33
	40901	5,4,3,first,last	var ordem_exec_first = [13,11,4,3,33,25,21] var ordem_exec_last = [13,11,4,3,33,25,21] var ordem_exec_middle = [13,11,4,3,33,25,21]	1985,1986,1987,1988, 1989,1990,1991,1992, 1993,1994,1995, 1996,1997,1998,1999, 2000,2001,2002,2003,2004, 2005,2006,2007,2008,2009, 2010,2011,2012,2013,2014, 2015
		5,4,3,first,last	var ordem_exec_first = [13,11,4,3,33,25,21] var ordem_exec_last = [13,11,4,3,31,33,25,21] var ordem_exec_middle = [13,11,4,3,33,25,21]	NA
		3,4,3,fist,last	var ordem_exec_first = [21,3,12,33,25,11] var ordem_exec_last = [21,3,12,33,25,11] var ordem_exec_middle = [21,3,12,33,25,11]	NA
	40902	5,4,3,first,last	var ordem_exec_first = [21,12,3,33,25,11] var ordem_exec_last = [12,21,3,25,33,11] var ordem_exec_middle = [12,21,3,25,33,11]	NA
		3,4,2003	var ordem_exec_middle = [11,33,25]	NA
		first,3,4,3,5,4,3,last	var ordem_exec_first = [33,11,3,25,21] var ordem_exec_last = [33,11,3,25,21] var ordem_exec_middle = [33,11,3,25,21]	NA
	40903	5,4,3,4,3,3	var ordem_exec_middle = [12,33,11,3,21,2]	25
		5,4,3,4,3,3	var ordem_exec_middle = [11,33,21]	12,3,25
PACÍFICO	40904	first, 3,4,3,5,4,3,last	var ordem_exec_first = [3, 31, 25, 21, 33] var ordem_exec_last = [3, 31, 21, 33, 25, 11] var ordem_exec_middle = [31, 3, 25, 21, 33, 11]	NA
		first, 5,4,3,4,3,3,last	var ordem_exec_first = [4,3, 13, 33] var ordem_exec_last = [21, 25, 4, 13, 3, 33,] var ordem_exec_middle = [21,25]	NA
	40905	first	var ordem_exec_first = [4,3, 13, 33]	1985
		first	var ordem_exec_first = [13,3,4,33]	NA
		first, 5,4,3,4,3,3,last	var ordem_exec_first = [3, 4, 21,25,33] var ordem_exec_last = [25,21,4,3,33] var ordem_exec_middle = [3, 4, 21,25,33]	11/2009, 2010,2011,2012,2013,2014, 2015,2016,2017,2018, 2019,2021,2022, 2023,2024,2025
	40906	first,5,4,3,4,3,3,last	var ordem_exec_first = [11,33,21,25,3,45] var ordem_exec_last = [11,33,21,25,3,4] var ordem_exec_middle = [11,33,21,25,3,4]	1985,1986,1987,1988, 1989,1990,1991,1992, 1993,1994,1995, 1996,1997, 1998,1999, 2000,2001,
		4,3,5,4,3,fist,last	var ordem_exec_first = [3,4,3,4] var ordem_exec_last = [3,4,3,4] var ordem_exec_middle = [3,4,3,4]	NA
	40910	4,3,5,4,3,fist,last	var ordem_exec_first = [3,4] var ordem_exec_last = [21,33,25] var ordem_exec_middle = [21,33,25,3,4]	NA
		first	var ordem_exec_first = [4]	1985,1986,1987,1988,1989

		3,4,3,5,4,3,first	<pre>var ordem_exec_first = [4] var ordem_exec_last = [4] var ordem_exec_middle = [4]</pre>	1985,1986,1987,1988
		first	var ordem_exec_first = [4]	1985,1986,1987
		first	var ordem_exec_first = [4]	1985,1986
		first	var ordem_exec_first = [4]	1985
		fisrt, 3,4,4,3,5,3	<pre>var ordem_exec_first = [4,3] var ordem_exec_last = [21,33,25] var ordem_exec_middle = [4,3,33,21,25]</pre>	NA
	40007	first,3,4,3,5,4,3,last	var ordem_exec_first = [11,12,13, 3,4,33,25] var ordem_exec_last = [11,13,12,25,3,4,33] var ordem_exec_middle = [11,13,3,12,4,25,33]	NA
	40907	first,3,4,3,5,4,3,3,last	var ordem_exec_first = [11,12,13, 3,4,33,25] var ordem_exec_last = [11,13,12,25,3, 4, 33] var ordem_exec_middle = [11,12,13, 3,4,33,25]	NA
GALÁPAGOS	40000	first,3,4,3,5,4,3,last	var ordem_exec_first = [12,13,33,25] var ordem_exec_last = [12,13,33,25] var ordem_exec_middle = [12,13,33,25]	3,4,21
	40908	first,3,4,3,5,4,3,3,last	var ordem_exec_first = [11,3,12,13,21,4,25,33] var ordem_exec_last = [11,21,3,12,13,4,25,33] var ordem_exec_middle = [11,3,12,13,21,4,25,33]	NA
		first,3,4,3,5,4,3,last	var ordem_exec_first = [12,13,33,25] var ordem_exec_last = [12,13,33,25] var ordem_exec_middle = [12,13,25,33]	3,4,21
	40909	first,3,4,3,5,4,3,3,last	var ordem_exec_first = [12,3,4,13,21,33,25] var ordem_exec_last = [12,13,21,3,4,25,33] var ordem_exec_middle = [12,3,4,21,33,25]	2005,2006,2007,2008,2009, 2010,2011,2012,2013,2014, 2015,2016,2017,2018,2019, 2020,2021,2022,2023,2024
		5,4,3,3,4,3	var ordem_exec_middle = [12,21,4,3,33,25]	1985,1986,1987,1988,1989, 1990,1991,1992,1993,1994, 2021,2022,2023,2024

4.3.3 Filtro espacial

El filtro espacial busca reducir la cantidad de píxeles aislados y/o discontinuos (Figura 19). Conjuntos de píxeles que no cumplen el equivalente a la unidad mínima de mapeo (≈ media hectárea; circa 5 píxeles) son identificados mediante reglas de vecindad y reclasificados (asumen el valor de la clase circundante).

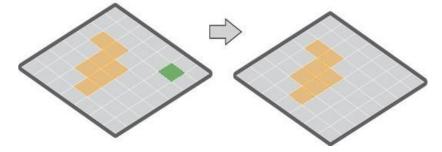


Figura 19. Funcionalidad del filtro espacial de la Colección 3.0 de MapBiomas Ecuador (Elaboración MapBiomas).

En la Amazonía de Ecuador se utilizó un filtro espacial en todas las regiones de clasificación, cuyos parámetros fueron ajustados según la región y se detallan en la siguiente tabla.

Tabla 11. Parámetros del filtro espacial definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

Bioma	Código región	Cantidad Iteraciones	Cantidad mínima de píxeles conectados	clases/años excluidos
	40101	1	5	NA
	40102	1	5	NA
	40103	1	5	NA
	40104	1	5	NA
	40105	2	5	33,25
AMAZONIA	40103	2	5	NA
AMAZONIA	40201	1	5	NA
	40202	1	5	NA
	40203	1	5	NA
	40204	2	5	33,25
	40204	Z	5	NA
	40205	1	5	NA
	40601	1	5	NA
	40602	1	5	NA
	40603	1	5	NA
	40604	2	5	33,25,23,11
ANDES	40004	Z	5	NA
ANDES	40605	1	5	NA
	40606	1	5	NA
	40607	1	5	NA
	40608	1	5	NA
	40609	1	5	NA
	40901	1	5	33,25,13
	40902	1	5	NA
	40903	1	5	NA
PACÍFICO	40904	1	5	NA
	40905	1	5	NA
	40906	1	5	NA
	40910	1	5	NA
	40907	1	5	NA
GALÁPAGOS	40908	1	5	NA
	40909	1	5	NA

4.3.4 Filtro de frecuencia

Este filtro toma en consideración la frecuencia de ocurrencia de clases naturales (IDs 3, 4, 6, 11, 12, 13, 29, 33, 34) a lo largo de toda la serie temporal, donde, clases con ocurrencias esporádicas a lo largo de la serie son reemplazadas por el valor de la clase más frecuente (temporalmente), siempre y cuando esta clase más frecuente cumpla con un criterio de estabilidad a lo largo de la serie

temporal. Este filtro contribuye a reducir oscilaciones temporales asociadas a dinámicas naturales que son clasificadas erróneamente como una clase distinta o un cambio de clase. La aplicación de este filtro da como resultado una clasificación de clases naturales más consistente al disminuir la frecuencia de falsos positivos relacionados a dinámicas naturales y preservando trayectorias consolidadas.

Cada píxel, evaluado a la largo de la serie histórica, debe cumplir con dos criterios simultáneamente para que el filtro sea aplicado: la ocurrencia de una sola clase natural debe superar un porcentaje mínimo a lo largo de la serie (presentar una relativa estabilidad), y la clase mayoritaria debe superar un porcentaje mínimo de ocurrencia para que prevalezca como la clase definitiva. A partir del valor de la clase que cumple este último porcentaje se actualiza aquellos píxeles "temporalmente aislados" que tienen una alta probabilidad de ser errores de clasificación (Figura 20).

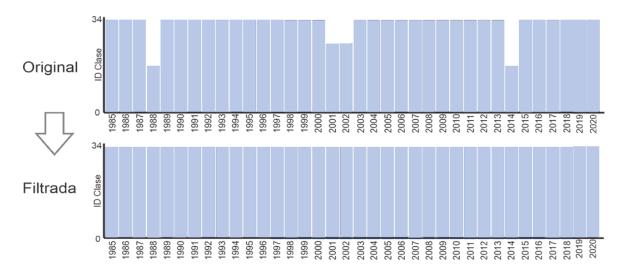


Figura 20. Funcionalidad del filtro de frecuencia de MapBiomas Ecuador (Elaboración MapBiomas).

En adición, y para cumplir las necesidades propias del territorio ecuatoriano, se trabajó en la adaptación e implementación de la posibilidad de generar geometrías de inclusión o exclusión, es decir, zonas puntuales o específicas donde el filtro cumplió con su funcionalidad o que el mismo no se lo realice, a estas geometrías se las denominó *hidden* y ejemplo de las mismas, la podemos observar en la Figura 21.

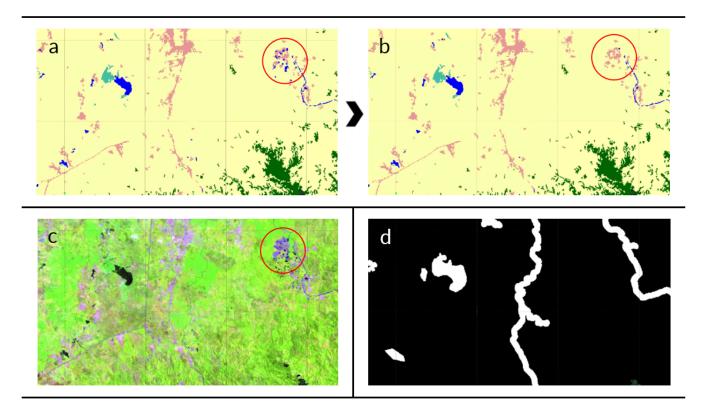


Figura 21. Geometrías de exclusión (hidden). a) Clasificación pre filtro. b) Clasificación post filtro de frecuencia. c) Mosaico Landsat año 2022 d)

Zona de exclusión en color blanco (Elaboración MapBiomas).

En Ecuador, los dos criterios fueron ajustados según las necesidades de cada región de clasificación y se resumen en la Tabla 12.

Tabla 12. Parámetros del filtro de frecuencia definidos para cada región de clasificación de la Colección 3.0 de MapBiomas Ecuador(Elaboración Ecociencia).

			Veget	ación Nativa		Clases/ años
Bioma	Código región	Cantidad Iteraciones	% vegetación nativa	% clase mayoritaria	Clases incluidas	excluidos
	40101	1	95	70	33,25	NA
			40	60	21	NA
	40102		10	10	21,25	NA
	40102	4	10	10	21	NA
			50	50	N/A	N/A
	40103	2	50	60	NA	NA
	40103	2	98	98	NA	NA
AMAZO	40104	2	80	50	21,25	NA
NIA	40104	2	90	50	3	NA
			95	95	NA	NA
	40105	3	70	70	NA	NA
			50	50	25,21	N/A
	40201	1	90	60	NA	NA
	40202	1	83	60	NA	NA
	40203	2	90	90	NA	NA

			50	70	25,33	NA
			60	60	33, 25	NA
			5	5	N/A	1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2002, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
	40204	5	5	5	N/A	2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025
			50	50	25, 13	2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017,2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025
			44	50	25,13	1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
	40205	1	60	80	21,25	NA
	40601	1	80	60	NA	NA
	40602	2	60	30	NA	NA
	40002	2	80	50	NA	NA
	40603	2	50	50	NA	NA
	70003	2	90	90	NA	NA
			85	70	11,13,12,25	NA
ANDES			95	90	12,11,25	N/A
	40604	5	50	40	12,11,33,3	2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019,

						2020, 2021, 2022, 2023, 2024, 2025
			50	50	13,12,11,21	N/A
			60	60	11,13,12,3	N/A
			50	50	NA	NA
			50	50	NA	NA
	40605	5	50	50	NA	NA
	40003	3	10	10	21,25	NA NA
			10	10	25	NA
	40/0/		10	50	21,25,33	NA
	40606	3	10	90	25,33	NA
			10	50	NA NA	NA
	40/07		40	40	NA 10	NA
	40607	3	10	10	12	NA NA
			90	40	NA NA	NA
	40608	2	60 80	20	NA NA	NA NA
	40609	2	70	40	NA NA	NA
			70	40	NA	NA
		001 4	70	70	NA	NA
			90	90	NA	NA
PACÍFIC	40901		20	20	3,25,31	1985, 1986, 1987, 1988, 1989, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025
O			75	85	NA	NA
	40902	1	90	90	NA	NA
	40903	2	14	14	3,33,25	NA
	10700	_	90	90	NA	NA
			75	70	NA	NA
			70	70	NA	NA
			50	55	NA	NA
			65	65	NA	1985, 1986, 1987, 1988, 1989
	40904	7	70	75	NA	NA
			65	70	NA	1985, 1986, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,

						2017, 2018,
						2019, 2020, 2021, 2022, 2023, 2024, 2025
			56	50	NA	1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025,
	40905	1	65	60	NA	NA
			90	90	NA	NA
	40906	2	80	60	NA	1985,1986, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025
	40910	1	90	70	NA	
	40910	1	90 50	70 50	NA NA	NA
	40910	1				NA NA
CALÁDA	40910	3	50	50	NA	
GALÁPA GOS			50 25	50 30	NA NA	NA 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2016, 2017, 2018, 2019, 2022, 2023,
	40907	3	50 25 55 70	50 30 60	NA NA	NA 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2016, 2017, 2018, 2019, 2022, 2023, 2024, 2025 1985, 1986, 1987, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2018, 2019, 2020, 2021, 2022, 2023,
	40907	3	50 25 55 70 70 40	50 30 60 65 75 40	NA NA NA NA	NA 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2016, 2017, 2018, 2019, 2022, 2023, 2024, 2025 1985, 1986, 1987, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 NA NA
	40907	3	50 25 55 70 70 40 40	50 30 60 65 75 40 40	NA NA NA NA NA NA NA	NA 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2016, 2017, 2018, 2019, 2022, 2023, 2024, 2025 1985, 1986, 1987, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 NA NA NA
	40907	3	50 25 55 70 70 40	50 30 60 65 75 40	NA NA NA NA	NA 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2016, 2017, 2018, 2019, 2022, 2023, 2024, 2025 1985, 1986, 1987, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 NA NA

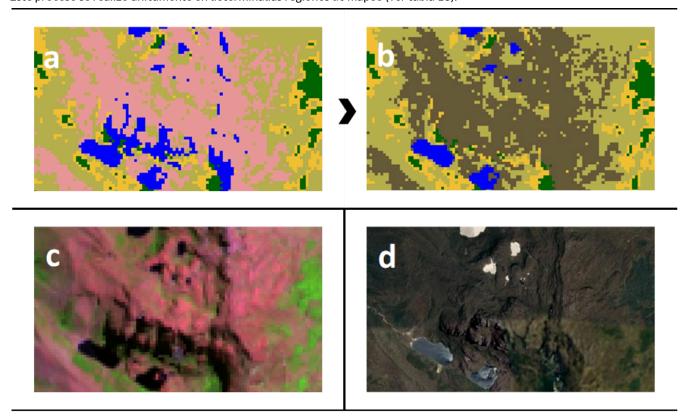
60 60 NA NA	60 60 NA NA
-------------	-------------

4.3.5 Orden de aplicación de filtros por región en Ecuador

Según las necesidades de cada región de clasificación, se ajustó el orden (Tabla 13) y los parámetros de cada filtro (Tablas 7 a 12).

Tabla 13. Orden de aplicación de filtros por región de clasificación en la Colección 3.0 de MapBiomas Ecuador (Elaboración Ecociencia).

Bioma	Código región	Filtros	Máscara
	40101	GapFill, Temporal, Frecuencia, Espacial	mascara_ID23_EC_col3 // mascara_ID68_EC_col3
	40102	$\label{lem:gapFill} GapFill, GapFill, Temporal, Frecuencia, Frecuencia, Frecuencia, Frecuencia, Máscara 1, Espacial$	mascara_ID23_EC_col3
	40103	Gapfill, Temporal, Frecuencia, Frecuencia, Temporal, Máscara1, Máscara2, Espacial	mascara_ID68_EC_col3
	40104	$Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia, M\'ascara 1, Mascara 2, Espacial$	mascara_ID68_EC_col3
AMAZONIA	40105	Gapfill,Gapfill,Temporal,Temporal,Frecuencia,Frecuencia,Frecuencia,Temporal, Máscara1,Máscara2, Espacial	mascara_ID23_EC_col3 // mascara_ID68_EC_col3
	40201	GapFill, temporal, temporal, frecuencia	mascara_ID23_EC_col3
	40202	GapFill, temporal, temporal, temporal, frecuencia	mascara_ID23_EC_col3
	40203	GapFill, GapFill	mascara_ID23_EC_col3
	40204	GapFill	NA
	40205	GapFill, GapFill, Temporal, Temporal, Frecuencia, Espacial	mascara_ID23_EC_col3
	40601	Gapfill, Gapfill, Temporal, Temporal, Frecuencia, Temporal	mascara_ID29_EC_col3 // mascara_ID9_EC_col3 // mascara_ID23_EC_col3
	40602	Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia	mascara_ID9_EC_col3 // mascara_ID23_EC_col3 // mascara_ID68_EC_col3
	40603	Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia, Mascara 1, Mascara 2, Mascara 3, Espacial	mascara_ID9_EC_col3 // mascara_ID23_EC_col3 // mascara_ID68_EC_col3
	40604		mascara_ID23_EC_col3 // mascara_ID68_EC_col3
ANDES	40605	Gapfill, Gapfill, Gapfill, Frecuencia, Frecuencia, Temporal, Frecuencia, Frecuencia, Mascara 1, Mascara 2, Mascara 3, Espacial	mascara_ID9_EC_col3 // mascara_ID23_EC_col3 // mascara_ID68_EC_col3
	40606	Gapfill, Temporal, Frecuencia, Temporal, Frecuencia, Frecuencia, Mascara1, Mascara2, Mascara3, Espacial	mascara_ID23_EC_col3 // mascara_ID68_EC_col3 // mascara_ID9_EC_col3
	40607	Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia, Frecuencia, Mascara1, Mascara2, Mascara3, Espacial	mascara_ID29_EC_col3 // mascara_ID23_EC_col3 // mascara_ID9_EC_col3
	40608	Gapfill, Gapfill, Temporal, Temporal, Frecuencia, Frecuencia	mascara_ID29_EC_col3 // mascara_ID9_EC_col3
	40609	Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia,	mascara_ID29_EC_col3
	40901	Gapfill, Gapfill, Temporal, Frecuencia, Temporal, Temporal, Frecuencia, Frecuencia,	mascara_IDbanano_EC_col3 // mascara_ID18_EC_col3 // mascara_ID31_EC_col3
	40902	Gapfill, Gapfill, Gapfill, Temporal, Temporal, Frecuencia, Temporal, Máscara 1, Máscara 2, Máscara 3, Espacial	NA
	40903	Gapfill, Frecuencia, Temporal, Temporal, Temporal, Frecuencia	mascara_ID31_EC_col3 // mascara_ID23_EC_col3
Pacífico	40904	Gapfill, Gapfill, Máscara, Gapfill, Temporal, Frecuencia, Frecuencia, Frecuencia, Frecuencia, Frecuencia, Frecuencia	mascara_ID31_EC_col3 // mascara_ID23_EC_col3 // mascara_IDbanano_EC_col3
	40905	Gapfill, Gapfill, Temporal, Temporal, Mask, Frecuencia	mascara_ID31_EC_col3 // mascara_ID23_EC_col3
_	40906	Gapfill, Gapfill, Temporal, Temporal, Frecuencia, Frecuencia	mascara_ID31_EC_col3 // mascara_ID23_EC_col3 // mascara_IDbanano_EC_col3


	40910	Gapfill, Temporal, Temporal, Temporal, Temporal, Temporal, Temporal, Temporal, Temporal, Frecuencia	mascara_ID31_EC_col3 // mascara_ID23_EC_col3
	40907	Gapfill, máscara, máscara, Gapfill, Temporal, Frecuencia, Temporal, Frecuencia, Frecuencia	mascara_ID23_EC_col3 // mascara_ID68_EC_col3
Galápagos	40908	Gapfill, Gapfill, Temporal, Frecuencia, Frecuencia, Temporal, Frecuencia	mascara_ID23_EC_col3
	40909	${\it Gapfill, Gapfill, Temporal, Frecuencia, Temporal, Frecuencia, Temporal, Frecuencia}$	mascara_ID23_EC_col3

4.3.6 Máscaras

Afloramiento rocoso (ID 29)

Hay que tomar en cuenta que a partir de cierta cota altitudinal la vegetación se ve reducida y afectada por algunos elementos como por ejemplo la temperatura y cantidad de oxígeno en la atmósfera. Según las zonas de vida de Holdridge⁹, a partir de los 4000 metros sobre el nivel del mar, encontramos los pisos altitudinales subalpino, alpino, y nival que se caracterizan por su baja o nula vegetación. Con este conocimiento se combinaron distintas fuentes de información como las curvas de nivel del Instituto Geográfico Militar a escala 1: 250.000, el Mapa de Uso y Cobertura de las Tierras y Sistemas Productivos del MAG e imágenes satelitales. Aplicando técnicas de análisis espacial y análisis visual de todos estos insumos, se logró determinar como una constante, que a partir de la cota altitudinal de 4000 metros sobre el nivel del mar encontramos los afloramientos rocosos. De esta forma se construyó una máscara a partir de dicha altitud para remapear los píxeles categorizados como áreas sin vegetación a la clase de afloramiento rocoso. Sin embargo, al realizar este análisis se pudo identificar que en las laderas del volcán Sumaco y Reventador también existen afloramientos rocosos a una menor altitud. Por lo que para estos dos casos el criterio altitudinal fue a partir de los 2400 metros para el Sumaco y 2000 para el Reventador, esto se realizó exclusivamente en la zona de clasificación Amazonía Alta 2 (ID 40102).

Este proceso se realizó únicamente en determinadas regiones de mapeo (ver tabla 13).

⁹ Las zonas de vida de Holdridge es un modelo qué divide al suelo en zonas de vida ordenadas de acuerdo a la región latitudinal, piso altitudinal y humedad. Se van definiendo diferentes zonas en función de la precipitación media anual, temperatura promedio anual y altitud.

Figura 22. Máscara de afloramiento rocoso (ID 29). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d)Imagen de alta resolución de Google Earth (Elaboración Ecociencia).

Silvicultura (ID 9)

El mapeo de silvicultura se basa en la asignación de valor correspondiente (ID = 9) a los píxeles que se hayan clasificado como una de las categorías boscosas dentro de los polígonos del Ministerio de Agricultura y Ganadería:

• Mapa de plantaciones forestales incentivadas en el Ecuador, escala 1:5.000, año 2020

Esta capa define plantación forestal como la "superficie arbolada que se obtiene de forma artificial por plantación de especies nativas o exóticas, que tienen los mismos años de vida y presentan una separación homogénea. Su objetivo es la obtención de productos madereros y no madereros." Esta capa puede serconsultada en: http://geoportal.agricultura.gob.ec

Este proceso se realizó únicamente en determinadas regiones de mapeo (ver tabla 13).

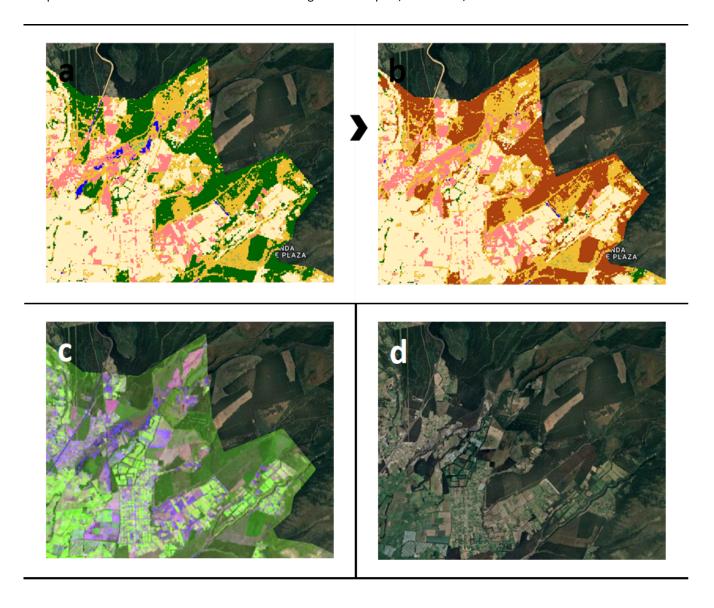


Figura 23. Máscara de silvicultura (ID = 9). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d) Imagen de alta resolución de Google Earth (Elaboración Ecociencia).

Acuicultura (ID 31)

El mapeo de acuicultura se basa en la asignación de valor correspondiente (ID = 31) a píxeles que se hayan clasificado como agua (ID = 33) dentro de los polígonos del Ministerio de Agricultura y Ganadería:

• Mapa de Cobertura y uso de la tierra y Sistemas productivos agropecuarios del Ecuador continental (versión editada por el Ministerio de Agricultura y Ganadería en 2020), escala 1:25.000, año 2009 - 2015

Cabe recalcar que de esta referencia se seleccionaron únicamente aquellos polígonos que dentro de la categoría "uso del suelo" cumplían con la descripción "acuícola". Esta capa puede serconsultada en: http://geoportal.agricultura.gob.ec

Este proceso se realizó únicamente en determinadas regiones de mapeo (ver tabla 13).

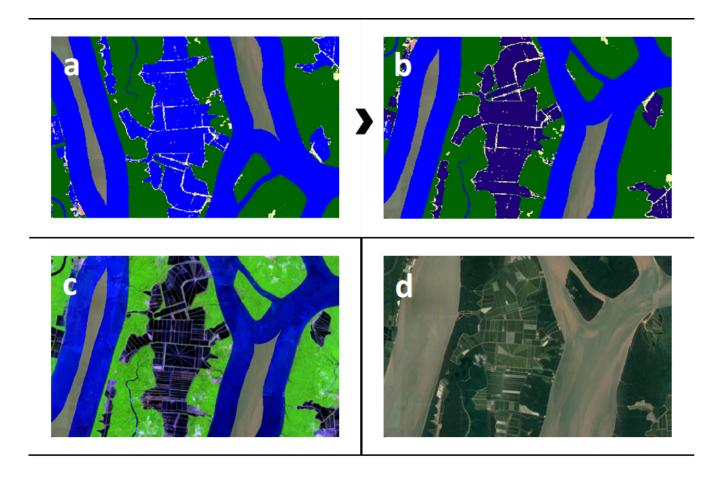


Figura 24. Máscara de acuicultura (ID = 31). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d) Imagen de alta resolución de Google Earth (Elaboración Ecociencia).

Remapeo de arrozales a mosaico de agricultura y/o pastos (ID 21)

El mapeo de cultivos (específicamente arroz) que se caracterizan por tener regímenes de inundación permanentes o temporales se basa en la re asignación del valor correspondiente a mosaico de agricultura y/o pastos (ID = 21) a píxeles de que se hayan clasificado como agua (ID = 33) dentro de los polígonos del Ministerio de Agricultura y Ganadería:

 Mapa de Estimación de superficie sembrada de los cultivos de arroz, maíz amarillo duro y soya en provincias priorizadas, escala 1:25.000, primer/segundo/tercer período de siembra, varios años Cabe recalcar que de esta referencia se seleccionaron únicamente aquellos polígonos que dentro de la categoría "nombre de cultivo" cumplían con la descripción "arroz". Esta capa puede ser consultada en: http://geoportal.agricultura.gob.ec

Este proceso se realizó únicamente en determinadas regiones de mapeo (ver tabla 13).

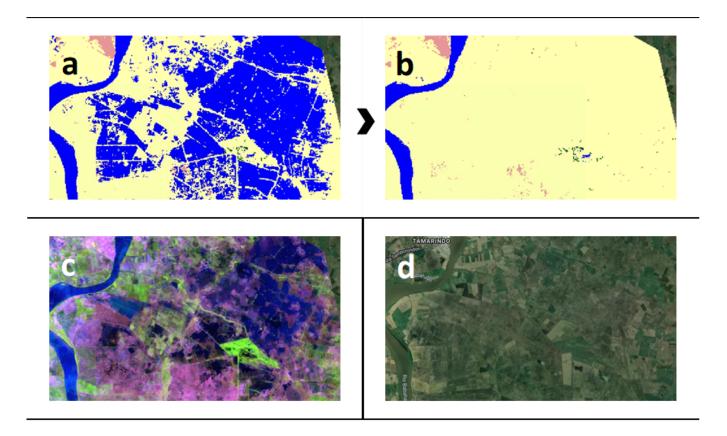


Figura 25. Máscara de arrozales (mosaico de agricultura y/o pastos, ID = 21). a) Clasificación original (antes de la aplicación de la máscara). b) Aplicación de máscara de afloramiento rocoso. c) Mosaico Landsat año 2022 d)Imagen de alta resolución de Google Earth (Elaboración Ecociencia).

Remapeo de playas, dunas y arenas (ID 23)

Para la generación de la máscara de playas, dunas y bancos de arena, se utilizó como referencia la capa "2009-2015 - Mapa de Cobertura y Uso de la Tierra y Sistemas Productivos Agropecuarios del Ecuador continental", en su versión editada por el Ministerio de Agricultura y Ganadería (MAG) en 2020. Esta capa, con una escala de 1:25.000, abarca el período 2009-2015.

En dicha capa, se seleccionaron los atributos correspondientes al **nivel 3**, los cuales incluyen las categorías específicas de bancos de arena y playas. Posteriormente, se realizó un análisis espacial utilizando la herramienta "**Seleccionar por ubicación**", en el que se empleó como referencia un shapefile de ríos dobles. Este proceso permitió identificar y delimitar las áreas relevantes asociadas al **ID23** dentro de la máscara generada. Posteriormente, se llevó a cabo una digitalización manual-visual empleando mapas base de Planet Explorer para refinar y delimitar con mayor precisión dichas áreas.

El enfoque combinado de análisis espacial y digitalización manual permitió garantizar la precisión y confiabilidad en la delimitación de las áreas de interés.

Remapeo de Otra área natural sin vegetación (ID 68)

A fin de detectar zonas o áreas naturales sin vegetación, una vez integrado del mapa generar, se trabaja con los siguientes filtros ajustados que modifican en valor del pixel únicamente en zonas con cobertura de áreas antrópicas sin vegetación (Id25):

4.3.7 Filtro temporal ajustado

Este filtro busca la detección de ID 68, siempre y cuando, el pixel se encuentra rodeado, en un intervalo de máximo 6 años en la serie temporal, de coberturas naturales, adicional, el filtro se aplica únicamente en áreas que diversas fuentes (ver anexo 3) señalan que no es una zona antrópica.

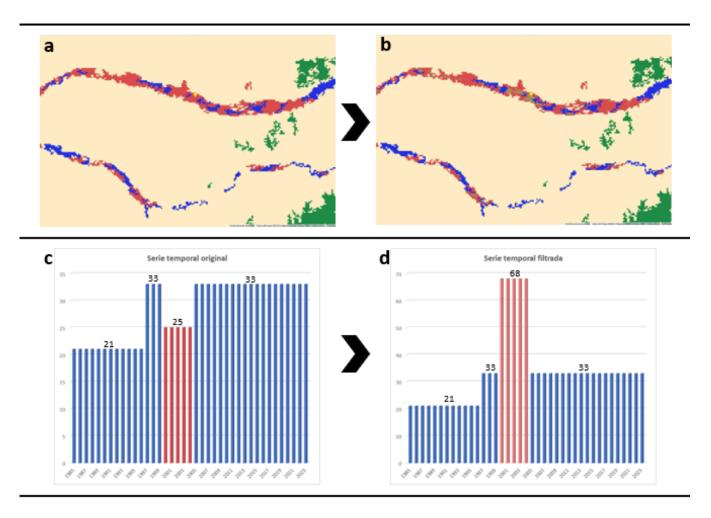


Figura 26. Filtro temporal ajustado para la clase de áreas naturales sin vegetación (ID = 68). a) Clasificación original (antes de la aplicación del filtro). b) Clasificación al aplicar el filtro. c) Serie temporal pre filtro. d) Serie temporal post filtro (Elaboración Ecociencia).

4.3.8 Filtro de frecuencia ajustado

Este filtro tiene como objetivo la detección de ID 68, siempre y cuando, en el análisis pixel a pixel, el 100% de la serie se haya detectado una cobertura natural o una áreas antrópica sin vegetación, el filtro se aplica únicamente en áreas que diversas fuentes (ver anexo 3) señalan que no es una zona antrópica.

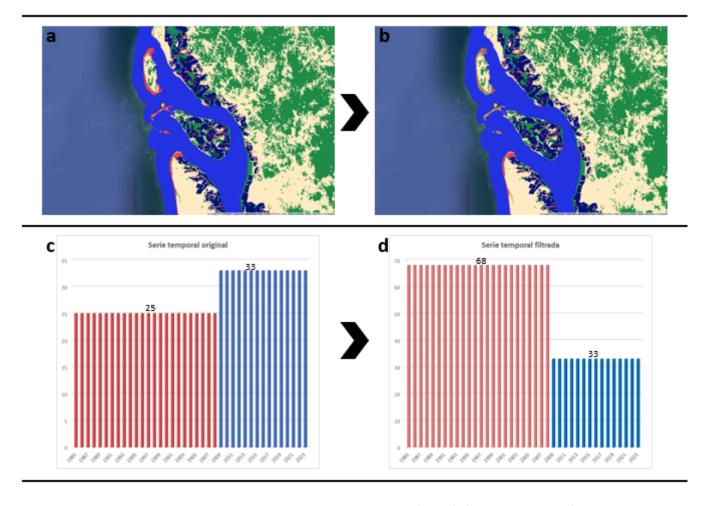


Figura 27. Filtro de frecuencia ajustado para la clase de áreas naturales sin vegetación (ID = 68). a) Clasificación original (antes de la aplicación del filtro). b) Clasificación al aplicar el filtro. c) Serie temporal pre filtro. d) Serie temporal post filtro (Elaboración Ecociencia).

4.4 Clasificación de los temas transversales

Para casos donde existen limitaciones en la diferenciación de ciertas clases, se han desarrollado metodologías específicas enfocadas en superar estas limitaciones. Estas metodologías se denominan "temas transversales" pues mapean de modo independiente al mapa general -o transversalmente- información para estas clases. Cada metodología desarrollada considera únicamente la clase de interés. Para la Colección 3.0 de MapBiomas Ecuador se mapean 6 clases transversalmente (Figura 28): manglar, bosque inundable, infraestructura urbana, minería, glaciares y, en esta última colección, se ha incorporado el cultivo de banano en una fase beta. Esta información ha sido incluida en el mapa final en una etapa denominada "integración". Cada metodología transversal es descrita en su respectivo ATBD temático.

A continuación se detalla qué clases fueron mapeadas siguiendo la metodología del Mapa General o como temas transversales (Figura 28).

ID	COLECCIÓN 3	TIPO	MAPA GENERAL	MAPA TRANSVERSAL
1	1. Formación Forestal			
3	1.1. Bosque	COBERTURA	X	
4	1.2. Bosque abierto	COBERTURA	Χ	

5	1.3. Manglar	COBERTURA		X
6	1.4. Bosque inundable	COBERTURA		X
10	2. Formación natural no forestal			
11	2.1. Formación natural no forestal inundable	COBERTURA	Χ	
12	2.2. Herbazal	COBERTURA	Χ	
81	2.3. Herbazales y arbustales andinos	COBERTURA	Χ	
82	2.4. Herbazales andinos inundables	COBERTURA	Χ	
29	2.5. Afloramiento rocoso	COBERTURA	Χ	
13	2.4. Otra formación natural no forestal	COBERTURA	Χ	
14	3. Agropecuaria y silvicultura			
9	3.1 Silvicultura	USO	Χ	
21	3.2 Mosaico de agricultura y/o pastos	USO	Χ	
74	3.3. Banano (beta)	USO		X
22	4. Área sin vegetación			
24	4.1. Infraestructura urbana	USO		X
30	4.2. Minería	USO		X
23	4.3. Playa, duna o banco de arena	COBERTURA	Χ	
25	4.4. Otra área antrópica sin vegetación	USO	X	
68	4.5. Otra área natural sin vegetación	COBERTURA	Χ	
26	5. Cuerpo de agua			
33	5.1 Río, lago u océano	COBERTURA	Χ	
34	5.2 Glaciar	COBERTURA		X
31	5.3 Acuicultura	USO	Χ	

Figura 28. Esquema metodológico empleado por clase de la leyenda en Ecuador (Elaboración Ecociencia).

4.5 Integración

4.5.1 Integración nacional

Esta fase integra todos los resultados obtenidos para cada región de mapeo en un único producto nacional. Este proceso significó juntar los resultados clasificados de las 28 regiones de clasificación que componen el Mapa General, y los resultados de los temas transversales. Para ello, se definieron reglas (Figura 29) que dictan un orden de prevalencia y definen qué clase predomina en el mapa integrado cuando más de un solo valor es posible para un mismo píxel debido a la superposición de las capas resultantes.

PACIFICO			DDE 41 51014	ANDES	MAPA	ID	PREVALENCIA		MAPA	ID	PREVALENCIA
Glaciar	MAPA	1D 34	PREVALENCIA	Glaciar	T	34	PREVALENCIA 1	Glaciar	T	34	1
	I		1	Glaciar	G	in 24 / out 29	2	Glaciar	G	in 24 / out 29	2
Glaciar	G	34	2	Agricultura	G	18	3	Infraestructura Urbana	т т	24	_
Infraestructura Urbana		24	3	Infraestructura Urbana	Ī	24	4		- 1		3
Minería	T	30	4	Formación Campestre o Sabana	G	12	5	Formación Campestre o Sabana	G	12	4
Formación Campestre o Sabana	G	12	5	Otra Formación Natural No Forestal	G	13	6	Otra Formación Natural No Forestal	G	13	5
Otra Formación Natural No Forestal	G	13	6	Afloramiento rocoso	G	29	7	Afloramiento rocoso	G	29	6
Plantacion forestal	G	9	7	Minería	ī	30	8	Plantacion forestal	G	9	7
Acuicultura	G	31	8	Río, Lago u Oceano de MB agua	T	33	9	Minería	T	30	8
Manglar	T	5	9	Plantacion forestal	G	9	10	Río, Lago u Oceano	G	33	9
Bosque Inundable	T	6	10					Pastos	T	15	10
Formación Natural No Forestal Inundable	G	11	11	Río, Lago u Oceano	G	33	11	Formación Natural No Forestal			
Río, Lago u Oceano	G	33	12	Pastos	T	15	12	Inundable	G	11	11
Afloramiento rocoso	G	29	13	Formación Natural No Forestal Inundable	G	11	13	Palma	T	35	12
Mosaico de Agricultura y/o Pasto	G	21	14	Agricultura	T	18	14	Bosque Inundable	T	6	13
Bosque abierto	G	4	15	Palma	T	35	15	Formación Forestal	G	3	14
Formación Forestal	G	3	16	Mosaico de Agricultura y/o Pasto	G	21	16	Otra Área Natural Sin Vegetación	G	68	15
Río, Lago u Oceano de MB agua	т т	33	17	Bosque Inundable	1	6	17	Agricultura	T	18	16
PLaya dunas y arenas	G	23		Otra Área Natural Sin Vegetación	G	68	18	Agricultura	G	18	17
		68	18	Otra Área Sin Vegetación	G	25	19	Otra Área Sin Vegetación	G	25	18
Otra Área Natural Sin Vegetación	G		19	Bosque abierto	G	4	13				
Otra Área Sin Vegetación antropica	G	25	20	Formación Forestal	G	3	20	Mosaico de Agricultura y/o Pasto	G	21	19
No observado	G	27	21	No observado	G	27	21	No observado	G	27	20

Figura 29. Reglas de prevalencia empleadas durante la fase de integración nacional de la Colección 3.0 de MapBiomas Ecuador . Las letras "G" (Mapa General) y "T" (Tema Transversal) junto al nombre de cada clase diferencian el origen del dato (Elaboración Ecociencia).

Las reglas de prevalencia son el producto de la evaluación de la superposición de capas para cada región de clasificación.

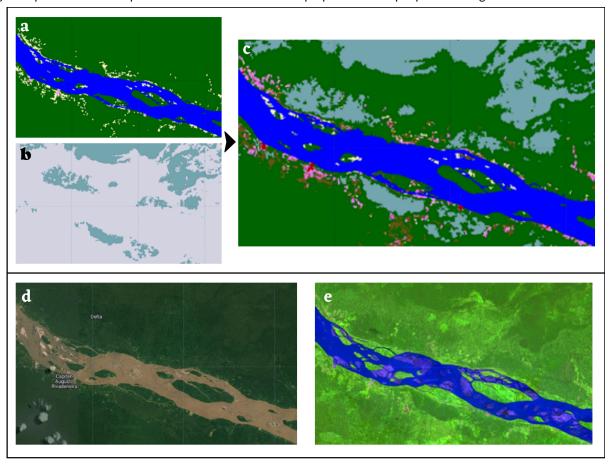


Figura 30. Ejemplo del efecto de la integración de capas para una zona en la Amazonía ecuatoriana (región 40201). a) Resultado clasificado del Mapa General 2021; b) Resultado clasificado del Tema transversal "bosque inundable" 2021; c) Mapa final que muestra el resultado del tema "bosque inundable" integrado al resultado del mapa general 2021; d) Mapa base de Google Earth Engine (imagen de alta resolución sin fecha); e) Mosaico Landsat para el año 2021; (Elaboración Ecociencia).

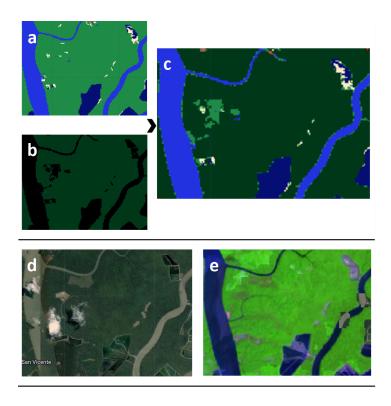


Figura 31. Ejemplo del efecto de la integración de capas para una zona en el Pacífico ecuatoriano (región 40904). a) Resultado clasificado del Mapa General 2022; b) Resultado clasificado del Tema transversal "manglar" 2022; c) Mapa final que muestra el resultado del tema "manglar" integrado al resultado del mapa general 2022; d) Mapa base de Google Earth Engine (imagen de alta resolución sin fecha); e) Mosaico Landsat para el año 2022; (Elaboración Ecociencia).

El resultado de esta fase es un único producto nacional. A continuación se presenta la serie temporal (1985-2024) completa para Ecuador:

Figura 32. Mapas anuales 1985-2024 resultantes de la integración nacional de Ecuador (Elaboración Ecociencia).

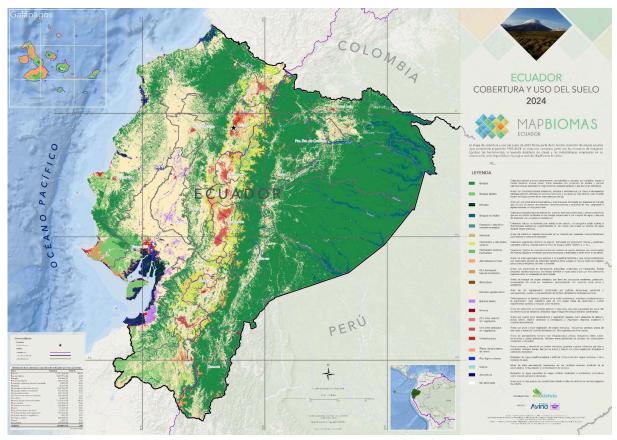


Figura 33. Mapa mural del mapeo de Cobertura y Uso del Suelo del año 2024 (Elaboración Ecociencia).

5. Referencias

- Comité Nacional de Límites Internos CONALI (2016). Organización Territorial del Estado.
- Cuesta F., M. Peralvo and N. Valarezo. 2009. Los Bosques Montanos de los Andes Tropicales. Quito: Biblioteca Asocam. 74 pp.
- Dubayah, R., Hofton, M., Blair, J., Armston, J., Tang, H., Luthcke, S. (2021). GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2023-11-27 from https://doi.org/10.5067/GEDI/GEDI02_A.002
- Eric Dinerstein, David Olson, Anup Joshi, Carly Vynne, Neil D. Burgess, Eric Wikramanayake, Nathan Hahn, Suzanne Palminteri, Prashant Hedao, Reed Noss, Matt Hansen, Harvey Locke, Erle C Ellis, Benjamin Jones, Charles Victor Barber, Randy Hayes, Cyril Kormos, Vance Martin, Eileen Crist, Wes Sechrest, Lori Price, Jonathan E. M. Baillie, Don Weeden, Kierán Suckling, Crystal Davis, Nigel Sizer, Rebecca Moore, David Thau, Tanya Birch, Peter Potapov, Svetlana Turubanova, Alexandra Tyukavina, Nadia de Souza, Lilian Pintea, José C. Brito, Othman A. Llewellyn, Anthony G. Miller, Annette Patzelt, Shahina A. Ghazanfar, Jonathan Timberlake, Heinz Klöser, Yara Shennan-Farpón, Roeland Kindt, Jens-Peter Barnekow Lillesø, Paulo van Breugel, Lars Graudal, Maianna Voge, Khalaf F. Al-Shammari, Muhammad Saleem, An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm, BioScience, Volume 67, Issue 6, June 2017, Pages 534–545, https://doi.org/10.1093/biosci/bix014
- Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, disponible de la base de datos de CGIAR-CSI SRTM 90m (https://srtm.csi.cgiar.org).
- Josse, C., G. Navarro, P. Comer, R. Evans, D. Faber-Langendoen, M. Fellows, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of Latin America and the Caribbean: A Working Classification of Terrestrial Systems. NatureServe, Arlington, VA.
- Josse, Carmen & Cuesta, Francisco & Navarro, Gonzalo & Barrena, Víctor & Cabrera, Edersson & Chacón-Moreno, Eulogio & Ferreira, Wanderley & Peralvo, Manuel & J. y Tovar A., Saito. (2009). Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela.
- Rivas-Torres Gonzalo. Benítez Fátima L. Rueda Danny. Sevilla Christian. Mena Carlos (2018). Metodología para mapear la cobertura de vegetación nativa e invasora en archipiélagos: Un ejemplo de las Islas Galápagos.. Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito. Quito, Ecuador.
- Ministerio del Ambiente, Agua y Transición Ecológica. (2013a). Mapa de Ecosistemas del Ecuador Continental. Escala 1:100000. Quito Ecuador. Disponible en: http://ide.ambiente.gob.ec/mapainteractivo/
- Ministerio del Ambiente, Agua y Transición Ecológica. (2013b) Mapa de Sectores biogeográficos, Proyecto Mapa de Vegetación del Ecuador Continental. Quito. Disponible en:
 - http://ide.ambiente.gob.ec/mapainteractivo/
- Ministerio del Ambiente, Agua y Transición Ecológica. (2013c). Metodología para la Representación Cartográfica de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural. Quito.
- Ministerio de Agricultura y Ganadería. (2017). Mapa de Cobertura y Uso de la Tierra del Ecuador Continental. Escala 1:25.000. Disponible en: http://geoportal.agricultura.gob.ec/
- Ministerio del Ambiente, Agua y Transición Ecológica, (2016). Mapa De Cobertura y Uso De La Tierra Del Ecuador Continental año 2000, 2008, 2014. Quito Ecuador. Disponible en: http://mapainteractivo.ambiente.gob.ec/portal/
- Ministerio del Ambiente, Agua y Transición Ecológica, (2017). Mapa De Cobertura y Uso De La Tierra Del Ecuador Continental año 2016. Quito Ecuador. Disponible en: http://ide.ambiente.gob.ec/mapainteractivo/
- Ministerio del Ambiente, Agua y Transición Ecológica, (2019). Mapa De Cobertura y Uso De La Tierra Del Ecuador Continental año 2018. Quito Ecuador. Disponible en: http://mapainteractivo.ambiente.gob.ec/portal/
- Potapov, P., X. Li, A. Hernandez-Serna, A. Tyukavina, M. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang C. Silva, J. Armston, R. Dubayah, B. Blair, M. Hofton. (2021) . Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, vol. 253, p. 112165. DOI: 10.1016/j.rse.2020.112165
- SENAGUA (2014) Unidades hidrográficas del Ecuador, nivel 5, escala 1:50000

6. Anexos

Anexo 1: Mapas de Referencia

6.1 Mapa de Ecosistemas del Ecuador Continental escala 1:100.000

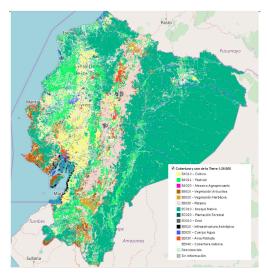

El mapa de ecosistemas (Figura 1) fue elaborado en el 2013 por el Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador a escala 1:100.000 (MAATE, 2013a). Este mapa provee información detallada sobre la caracterización, localización y distribución espacial de los ecosistemas remanentes al 2012 del Ecuador continental para áreas con cobertura natural permitiendo distinguir tipos de formaciones naturales forestales y no forestales de áreas intervenidas. La metodología desarrolló un modelo biofísico a partir de factores ambientales bióticos y abióticos relevantes para la distribución de ecosistemas, cuya delimitación se apoyó en información sobre cobertura del suelo derivada de la interpretación de imágenes satelitales. El mapa presenta un sistema de clasificación jerárquica anidada. El mapa define 87 ecosistemas para la totalidad del territorio nacional continental, cuyo detalle puede ser revisado en el Anexo 1 del presente documento. Descrito por MAATE como: "Esta cobertura representa la caracterización, localización y distribución de los ecosistemas del Ecuador Continental al año 2012. Elaborado a escala 1: 100 000 a partir de modelamientos biofísicos, interpretación de imágenes satelitales (2010-2012) y validación en campo. Es un insumo base para explicar el estado de la biodiversidad a través de distintos tipos de análisis y una herramienta para facilitar la gestión y creación de políticas coherentes con el adecuado uso y manejo de los recursos naturales." Estos datos están disponibles para descarga en: http://ide.ambiente.gob.ec/mapainteractivo/

Figura 1. Mapa oficial de los Ecosistemas del Ecuador Continental. El detalle de la leyenda se encuentra en el Anexo 1 de este documento. Imagen tomada del Mapa Interactivo Ambiental SUIA.

6.2. Mapa de Cobertura y Uso de la Tierra escala 1:25.000

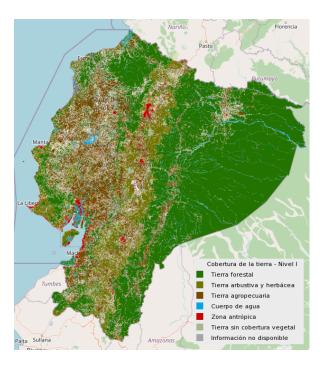
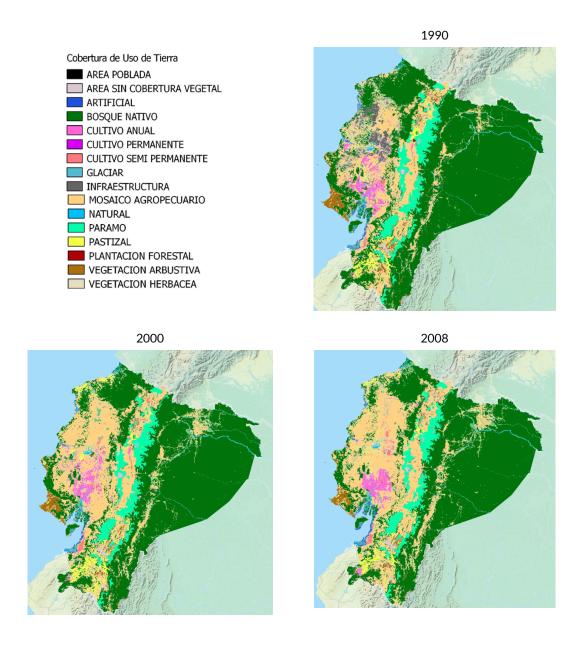
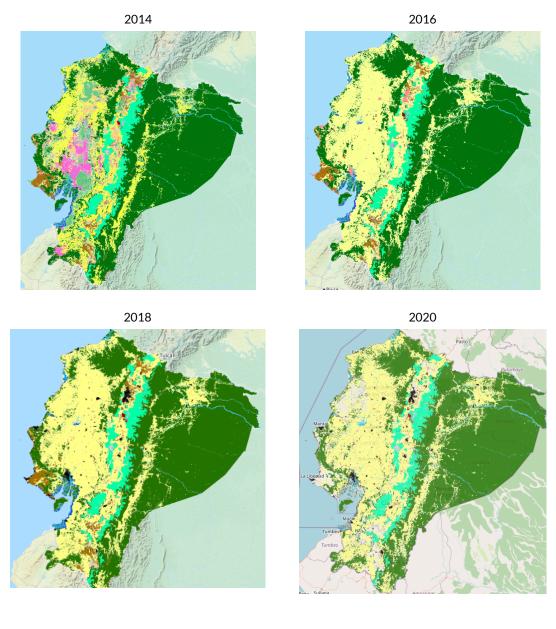
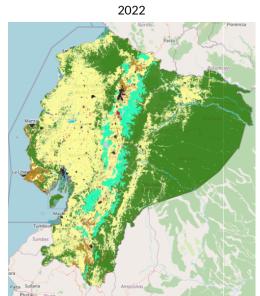

El mapa de cobertura y uso de la tierra a escala 1:25.000 (Figura 2) es un producto creado a nivel nacional desde el año 2009 al 2015, en un trabajo colaborativo entre Ministerio de Ganadería ex MAGAP, SIGTIERRAS y el Instituto Espacial Ecuatoriano (IEE) y SENPLADES 2017. La información fue generada a nivel cantonal, con una periodicidad distinta para cada cantón dentro del periodo mencionado. Este mapa proporciona información detallada de los sistemas productivos, cobertura del suelo, tamaño de la parcela, y temporalidad del cultivo. En el 2017 el Ministerio de Agricultura homologó la información cantonal generando el mapa de cobertura y uso de la tierra nacional. Estos datos están disponibles como geo-servicio en http://www.geoportaligm.gob.ec/p afc/ows?service=wms&version=1.3.0&request=GetCapabilities

Figura 2. Mapa oficial de Cobertura y uso de la tierra de Ecuador. El detalle de la leyenda se encuentra en el Anexo 2 de este documento. Imagen tomada del Geoportal del Ministerio de Agricultura y Ganadería


6.3 Mapa de Cobertura y uso de la tierra y Sistemas productivos agropecuarios del Ecuador continental (versión editada por el Ministerio de Agricultura y Ganadería en 2020) escala 1:25.000


El mapa de Cobertura y uso de la tierra y sistemas productivos agropecuarios del Ecuador continental (versión editada por el Ministerio de Agricultura y Ganadería en 2020) estuvo a cargo del Instituto Espacial Ecuatoriano (IEE) y el Ministerio de Agricultura y Ganadería (MAG) a través del Sistema Nacional de Información de Tierras Rurales e Infraestructura Tecnológica (programa SIGTIERRAS). En el producto de 2015 se identificaron inconsistencias, por lo que se corrigió la información de algunas variables en el año 2020. Este mapa identifica los diferentes tipos de coberturas que ocupan la superficie de la tierra y determina el uso que da el hombre a cada una de ellas caracterizando el sistema de producción. La escala de trabajo es 1:25.000, lo que implica que la información del mapa no puede utilizarse para estudios que requieran escalas más detalladas ya que la Unidad Mínima Cartografiable (UMC) establecida es de 1.0 hectárea. Estos datos están disponibles para descarga en: http://geoportal.agricultura.gob.ec/



6.4 Mapas de Cobertura y Uso de la Tierra (CUT) del Ecuador Continental escala 1:100.000

Los mapas de cobertura y uso de la tierra generados por el Ministerio del Ambiente, Agua y Transición Ecológica y MAGAP (2014) para los años 1990, 2000, 2008, 2014, 2016, 2018 y 2020 a nivel nacional continental (Figura 4), identifican unidades con características comunes, desde bosques, zonas agrícolas y zonas transformadas a escala 1:100.000. Los mapas generados cuentan con dos niveles de detalle: a) nivel I corresponde a las 6 clases definidas por el IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático); b) el nivel II corresponde a 16 clases (más detalladas) acordadas en mesas de diálogo intersectoriales. Disponible para descarga en: http://ide.ambiente.gob.ec/mapainteractivo/

6.5 Mapa de Ecosistemas de Galápagos

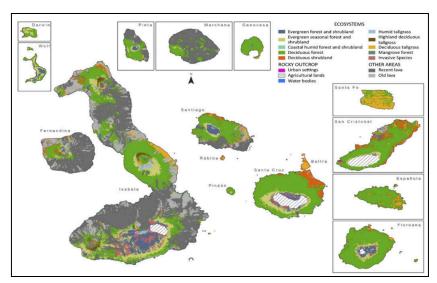


Figura 5. Mapa de Ecosistemas de Galápagos (Rivas et al., 2018, Universidad San Francisco de Quito)

6.6 Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 2000-2017 de la Amazonía

En el 2019, RAISG y el Proyecto MapBiomas Amazonía presentaron su colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. Se generó a partir de la clasificación de imágenes de satélite Landsat desde el 2000 al 2017 empleando árboles de decisión empíricos para la interpretación de imágenes satelitales. El proyecto MapBiomas Amazonía es desarrollado en conjunto por los socios de RAISG en los países amazónicos siguiendo una única metodología.

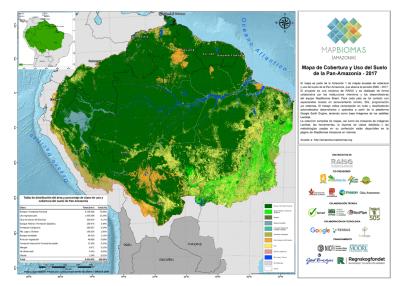


Figura 6. Mapa mural (año 2017) de la Colección 1 de MapBiomas Amazonía (RAISG, 2019).

6.7 Colección 2 de Mapas anuales de Cobertura y Uso del Suelo 1985-2018 de la Amazonía

En 2020, RAISG presentó su segunda colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. A diferencia de la Primera colección, este mapa actualizado abarca los años del periodo 1985 a 2018. Los mapas fueron generados a partir de la

clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

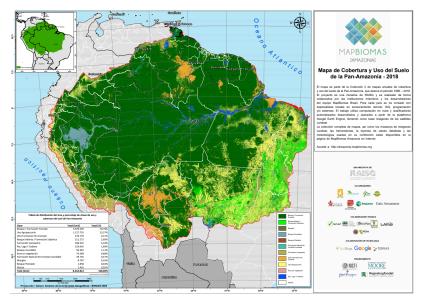


Figura 7. Mapa mural (año 2018) de la Colección 2 de MapBiomas Amazonía (RAISG, 2020).

6.8 Colección 3 de Mapas anuales de Cobertura y Uso del Suelo 1985-2020 de la Amazonía

En 2021, RAISG presentó su tercera colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. A diferencia de la Segunda colección, este mapa actualizado abarca los años del periodo 1985 a 2020. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

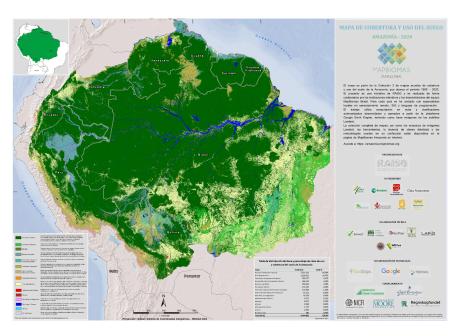


Figura 8. Mapa mural (año 2020) de la Colección 3 de MapBiomas Amazonía (RAISG, 2021).

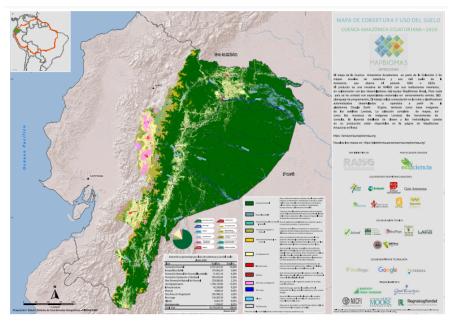


Figura 9. Mapa mural (año 2020) de Ecuador de la Colección 3 de MapBiomas Amazonía (RAISG, 2021).

6.9 Colección 4 de Mapas anuales de Cobertura y Uso del Suelo 1985-2021 de la Amazonía

En 2022, RAISG presentó su cuarta colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. Este mapa actualizado abarca los años del periodo 1985 a 2021. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

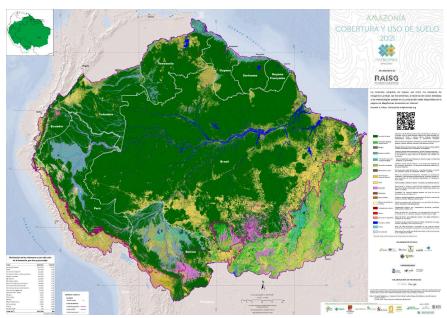


Figura 10. Mapa mural (año 2020) de la Colección 4 de MapBiomas Amazonía (RAISG, 2022).

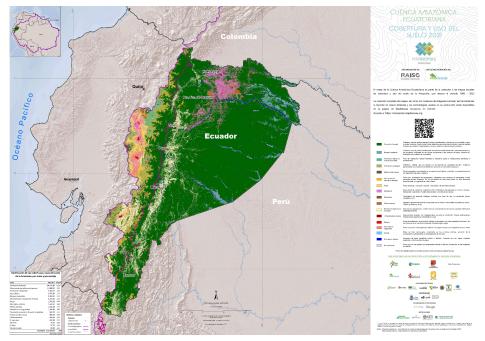


Figura 11. Mapa mural (año 2021) de Ecuador de la Colección 4 de MapBiomas Amazonía (RAISG, 2022).

6.10 Colección 5 de Mapas anuales de Cobertura y Uso del Suelo 1985-2022 de la Amazonía

En 2023, RAISG presentó la quinta colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. Este mapa actualizado abarca los años del periodo 1985 a 2022. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

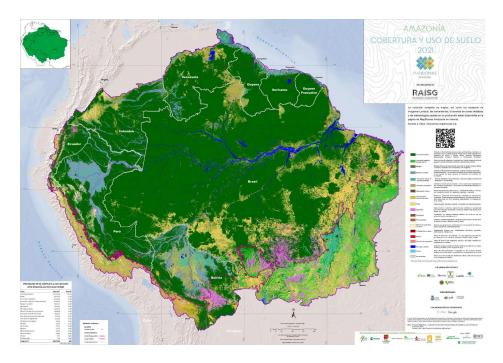


Figura 12. Mapa mural (año 2022) de la Colección 5 de MapBiomas Amazonía (RAISG, 2023).

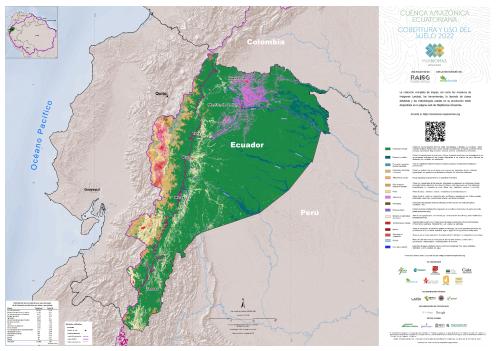
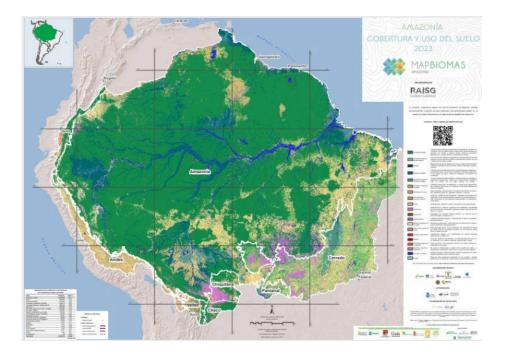
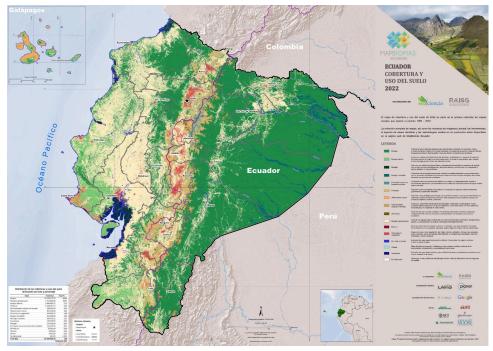
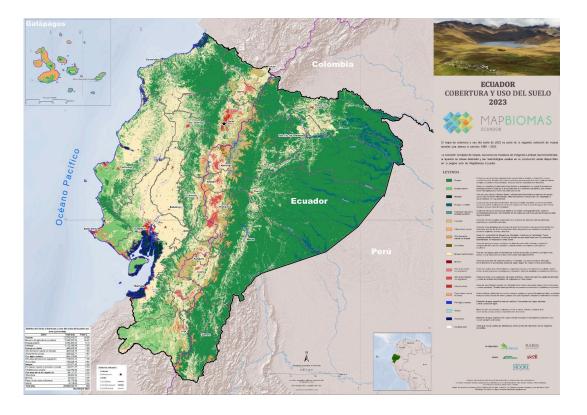



Figura 13. Mapa mural (año 2022) de Ecuador de la Colección 5 de MapBiomas Amazonía (RAISG, 2023).


6.11 Colección 6 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 de la Amazonía

En 2024, RAISG presentó la quinta colección de mapas anuales de cobertura y uso del suelo de la Pan Amazonia. Este mapa actualizado abarca los años del periodo 1985 a 2023. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.


6.12 Colección 1 de Mapas anuales de Cobertura y Uso del Suelo 1985-2022 del Ecuador

En 2023, MapBiomas Ecuador presentó la primera colección de mapas anuales de cobertura y uso del suelo del Ecuador. Este mapa actualizado abarca los años del periodo 1985 a 2022. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

6.13 Colección 2 de Mapas anuales de Cobertura y Uso del Suelo 1985-2023 del Ecuador

En 2024, MapBiomas Ecuador presentó la segunda colección de mapas anuales de cobertura y uso del suelo del Ecuador. Este mapa actualizado abarca los años del periodo 1985 a 2023. Los mapas fueron generados a partir de la clasificación de imágenes de satélite Landsat empleando Random Forest mediante scripts implementados enteramente en la plataforma Google Earth Engine.

Anexo 2: Leyenda del Mapa de Ecosistemas de Ecuador

Ecosistema	5
Agua	
	al deciduo y Herbazal de playas del Litoral
=	al desértico de tierras bajas del Jama-Zapotillo
Arbusta Arbusta	al desértico del sur de los Valles
Arbusta	al semideciduo del sur de los Valles
Arbusta	al siempreverde montano alto del Páramo del sur
Arbusta Arbusta	al siempreverde montano del norte de los Andes
Arbusta	al siempreverde montano del sur de los Andes
Arbusta	al siempreverde ripario de la Cordillera Oriental de los Andes
Arbusta	al siempreverde y Herbazal del Páramo
Arbusta	al siempreverde y Herbazal montano de la cordillera del Cóndor
Bosque	bajo y Arbustal deciduo de tierras bajas del Jama-Zapotillo
Bosque	deciduo de Cordillera Costera del Pacífico Ecuatorial
Bosque	deciduo de tierras bajas del Jama-Zapotillo
Bosque	deciduo montano bajo del Catamayo-Alamor
Bosque	deciduo piemontano del Catamayo-Alamor
_	
Bosque	inundable de la llanura aluvial de los ríos de origen amazónico
Bosque	inundable de la llanura aluvial de los ríos de origen andino y de Cordilleras Amazónicas
Bosque	inundable de llanura intermareal del Chocó Ecuatorial
Bosque	inundable y vegetación lacustre-riparia de aguas negras de la Amazonía
Bosque	inundado de la llanura aluvial de la Amazonía
Bosque	inundado de llanura aluvial del Chocó Ecuatorial
Bosque	inundado de palmas de la llanura aluvial de la Amazonía
Bosque	semideciduo de Cordillera Costera del Pacífico Ecuatorial
Bosque	semideciduo de tierras bajas del Jama-Zapotillo
Bosque	semideciduo montano bajo del Catamayo-Alamor
Bosque	semideciduo piemontano del Catamayo-Alamor
Bosque	semideciduo piemontano del Sur de la Cordillera Oriental de los Andes
Bosque	siempreverde de tierras bajas con bambú de la Amazonía
Bosque	siempreverde de tierras bajas del Abanico del Pastaza
Bosque	siempreverde de tierras bajas del Aguarico-Putumayo-Caquetá
Bosque	siempreverde de tierras bajas del Chocó Ecuatorial
Bosque	siempreverde de tierras bajas del Napo-Curaray
Bosque	siempreverde de tierras bajas del Tigre-Pastaza
Bosque	siempreverde del Páramo
Bosque	siempreverde estacional de tierras bajas del Chocó Ecuatorial
Bosque	siempreverde estacional de tierras bajas del Jama-Zapotillo
Bosque	siempreverde estacional inundable de llanura aluvial del Jama-Zapotillo
Bosque	siempreverde estacional montano bajo de Cordillera Costera del Pacífico Ecuatorial
Bosque	siempreverde estacional montano bajo del Catamayo-Alamor
Bosque	siempreverde estacional piemontano de Cordillera Costera del Chocó
	siempreverde estacional piemontano de Cordillera Costera del Pacífico Ecuatorial
	siempreverde estacional piemontano de Cordillera Occidental de los Andes
	siempreverde estacional piemontano del Catamayo-Alamor
_	siempreverde montano alto de Cordillera Occidental de los Andes
Posauo	ciemproverde montene elte del Catema n. Alemer

Bosque siempreverde montano alto del Catamayo-Alamor

- Bosque siempreverde montano alto del Norte de la Cordillera Oriental de los Andes
- Bosque siempreverde montano alto del Sur de la Cordillera Oriental de los Andes
- Bosque siempreverde montano bajo de Cordillera Costera del Chocó
- Bosque siempreverde montano bajo de Cordillera Occidental de los Andes
- Bosque siempreverde montano bajo de Galeras
- Bosque siempreverde montano bajo de las cordilleras del Cóndor-Kutukú
- Bosque siempreverde montano bajo del Catamayo-Alamor
- Bosque siempreverde montano bajo del Norte de la Cordillera Oriental de los Andes
- Bosque siempreverde montano bajo del Sur de la Cordillera Oriental de los Andes
- Bosque siempreverde montano bajo sobre mesetas de arenisca de las cordilleras del Cóndor-Kutukú
- Bosque siempreverde montano de Cordillera Occidental de los Andes
- Bosque siempreverde montano de las cordilleras del Cóndor-Kutukú
- Bosque siempreverde montano del Catamayo-Alamor
- Bosque siempreverde montano del Norte de la Cordillera Oriental de los Andes
- Bosque siempreverde montano del Sur de la Cordillera Oriental de los Andes
- Bosque siempreverde montano sobre mesetas de arenisca de la cordillera del Cóndor
- Bosque siempreverde piemontano de Cordillera Occidental de los Andes
- Bosque siempreverde piemontano de Galeras
- Bosque siempreverde piemontano de las cordilleras del Cóndor-Kutukú
- Bosque siempreverde piemontano del Catamavo-Alamor
- Bosque siempreverde piemontano del Norte de la Cordillera Oriental de los Andes
- Bosque siempreverde piemontano del Sur de la Cordillera Oriental de los Andes
- Bosque siempreverde piemontano sobre afloramientos de roca caliza de las Cordilleras Amazónicas
- Bosque siempreverde piemontano sobre mesetas de arenisca de las cordilleras del Cóndor-Kutukú
- Bosque siempreverde sobre mesetas de arenisca de la cordillera del Cóndor en la baja Amazonía ecuatoriana
- Bosque y Arbustal semideciduo del norte de los Valles
- Bosque y Arbustal semideciduo del sur de los Valles
- Herbazal del Páramo
- Herbazal húmedo montano alto superior del Páramo
- Herbazal húmedo subnival del Páramo
- Herbazal inundable del Páramo
- Herbazal inundable ripario de tierras bajas del Chocó Ecuatorial
- Herbazal inundable ripario de tierras bajas del Jama-Zapotillo
- Herbazal inundado lacustre del Pacífico Ecuatorial
- Herbazal inundado lacustre-ripario de la llanura aluvial de la Amazonía
- Herbazal lacustre montano bajo del Sur de la Cordillera Oriental de los Andes
- Herbazal ultrahúmedo subnival del Páramo
- Herbazal y Arbustal siempreverde del Páramo del volcán Sumaco
- Herbazal y Arbustal siempreverde subnival del Páramo
- Intervención
- Manglar del Chocó Ecuatorial
- Manglar del Jama-Zapotillo
- Otras áreas
- Rosetal caulescente y Herbazal del Páramo (frailejones)
- Sin información
- Otros

Anexo 3: Leyenda del Mapa de Cobertura y Uso de la Tierra del Ecuador Continental

Nivel I	Nivel II	Definición Operativa	Fuente
Bosque Nativo		Ecosistema arbóreo, primario o secundario, regenerado por sucesión natural; se caracteriza por la presencia de árboles de diferentes especies nativas, edades y portes variados, con uno o más estratos.	MAE (2016)
	Plantación Forestal	Masa arbórea establecida antrópicamente con una o más especies forestales.	MAE (2011)
Vegetación Arbustiva y Herbácea	Vegetación Arbustiva	Áreas con un componente substancial de especies leñosas nativas no arbóreas. Incluye áreas degradadas en transición a una cobertura densa del dosel.	MAE (2011)
	Páramo	Vegetación tropical altoandino caracterizada por especies dominantes no arbóreas que incluyen fragmentos de bosque nativo propios de la zona.	MAGAP - IEE (2012)
	Vegetación Herbácea	Áreas constituidas por especies herbáceas nativas con un crecimiento espontáneo, que no reciben cuidados especiales, utilizados con fines de pastoreo esporádico, vida silvestre o protección.	MAGAP - IEE (2012)
Tierra Agropecuaria	Cultivo Anual	Comprende aquellas tierras dedicadas a cultivos agrícolas, cuyo ciclo vegetativo es estacional, pudiendo ser cosechados una o más veces al año.	MAGAP - IEE (2012)
	Cultivo Semipermanente	Comprenden aquellas tierras dedicadas a cultivos agrícolas cuyo ciclo vegetativo dura entre uno y tres años.	MAGAP - IEE (2012)
Cultivo Permanente		Comprenden aquellas tierras dedicadas a cultivos agrícolas cuyo ciclo vegetativo es mayor a tres años, y ofrece durante éste periodo varias cosechas.	MAGAP - IEE (2012)
	Pastizal	Vegetaciones herbáceas dominadas por especies de gramíneas y leguminosas introducidas, utilizadas con fines pecuarios, que para su establecimiento y conservación, requieren de labores de cultivo y manejo.	MAGAP - IEE (2012)
Tierra Agropecuaria	Mosaico Agropecuario (Asociación)	Son agrupaciones de especies cultivadas que se encuentran mezcladas entre sí y que no pueden ser individualizadas; y excepcionalmente pueden estar asociadas con vegetación natural.	MAGAP - IEE (2012)
	Cultivo de banano	Son áreas destinadas principalmente al establecimiento de plantas de banano (Musa spp.), cultivadas de forma continua y homogénea, generalmente en parcelas de tamaño variable. Este cultivo puede presentarse asociado con otras especies agrícolas o con vegetación secundaria en los bordes de los lotes, aunque su cobertura dominante corresponde al banano.	MAE (2023)
Cuerpo de Agua	Natural	Superficie y volumen asociado de agua estática o en movimiento.	MAGAP - IEE (2012)
	Artificial	Superficie y volumen asociado de agua estática o en movimiento asociadas con las actividades antrópicas y el manejo del recurso hídrico.	MAGAP - IEE (2012)
Zona Antrópica	Área Poblada	Áreas principalmente ocupadas por viviendas y edificios destinados a colectividades o servicios públicos.	MAGAP - IEE (2012)
	Infraestructura	Obra civil de transporte, comunicación, agroindustrial y social.	MAGAP - IEE (2012)
Otras Tierras Área sin cobertura vegetal		Áreas generalmente desprovistas de vegetación, que por sus limitaciones edáficas, climáticas, topográficas o antrópicas, no son aprovechadas para uso agropecuario o forestal, sin embargo pueden tener otros usos.	MAGAP - IEE (2012)
	Glaciar	Nieve y hielo localizados en las cumbres de las elevaciones andinas.	MAGAP - IEE (2012)

Anexo 4: Feature space de la Colección 3.0 de MapBiomas Amazonía.

						Reductor aplicado											
Tipo	Variable	Fórmula	Descripción	Med	DryMed	WetMed	Max	Min	Amp	StdDev	DryMin	DryMax	WetMin	WetMax	DryQmo	WetQmo	
Banda	blue	B1 (L5 y L7); B2 (L8)	Espectro visible azul		_	_						_		-	_	$\vec{-}$	
	green	B2 (L5 y L7); B3 (L8)	Espectro visible verde														
	red	B3 (L5 y L7); B4 (L8)	Espectro visible rojo														
	nir	B4 (L5 y L7); B5 (L8	Infrarrojo cercano														
	swir1	B5 (L5 y L7); B6 (L8)	Infrarrojo de onda corta 1														
	swir2	B7 (L5); B8 (L7); B7(L8)	Infrarrojo de onda corta 2														
Indices	cai	(swir2 / swir1)			_											\vdash	
	evi2	(2.5 * (nir - red)/(nir + 2.4 * red + 1)	Modificación del Índice de Vegetación Mejorado (EVI) que solo utiliza NIR y Red, obviando la banda azul.													Ш	
	gli	(2xGREEN+RED+BLUE) / (2xGREEN+RED+BLUE)	green leaf index													Ш	
	mndwi	(Green-NIR)/(Green+NIR)	Modificación del Índice de diferencia normalizada de agua	-	_					<u> </u>	_				-	\vdash	
	ndbi	(SWIR1-NIR)/(SWIR1+NIR)	Normalized Difference Built-Up Index													\vdash	
	ndgb	(Green-Blue)/(Green+Blue)	Diferenca normalizada de las bandas verde y azul												-	\vdash	
	ndmi ndmir	(NIR - SWIR1) / (NIR + SWIR1). (SWIR1-SWIR2)/(SWIR1+SWIR2)	Diferenca normalizada de las bandas del infrarrojo cercano y mediano Diferenca normalizada de las bandas del infrarrojo mediano								_	-		-	-	\vdash	
	ndrb	(Red-Blue)/(Red+Blue)	Diferenca normalizada de las bandas rojo y azul													\vdash	
	ndsi	(green-swir1)/(green+swir1)	Índice Diferencial Normalizado de Nieve												-	\vdash	
	ndsi2	(SWIR1 - NIR) / (SWIR1 + NIR)	TIGLE DIFFERDS NOTHINGS OF THEFE							\vdash						\vdash	
	ndvi	(nir - red)/(nir + red)	Índice de vegetación de diferencia normalizada													\vdash	
	ndwi_gao	(nir - swir)/(nir + swir)	Índice de agua de diferencia normalizada (gao)														
	ndwi_mcfeeters	(green - nir)/(green+nir)	Índice de agua de diferencia normalizada (mcfeeters)							$\overline{}$						\Box	
	gcvi	(nir / green) - 1	Green Clorophyll Vegetation Index														
	hallcover	(-red * 0.017) - (nir * 0.007) - (swir2 * 0.079) + 5.22	Índice espectral de cubierta terrestre														
	pri	(blue - green)/(blue + green)	Índice de reflectancia fotoquímica (Photochemical Reflectance Index)													\square	
	savi	(1+L)* (nir - red)/(nir + red + 0,5)	Índice de vegetación ajustada al suelo											\perp		$\boldsymbol{\sqcup}$	
	textG	('median_green') .entropy(ee.Kernel .square({radius: 5)))	Entropía en la banda Azul													Ш	
	nuaci	$UNTL*(1-\sqrt{(NDWIi-aNDWI)}2+$ (NDVIi-aNDVI)2+(NDBIi-aNDBI)2)	Índice Normalizado Compuesto de Áreas Urbanas													Ш	
Fracción MME	84		Abundancia fraccional de vegetación verde dentro del pixel													Ш	
	npv		Abundancia fraccional de vegetación no fotosintética dentro del píxel													\vdash	
	soil		Abundancia fraccional de suelo dentro del pixel	_											-	\vdash	
	snow		Abundancia fraccional de nieve dentro del pixel	_	_	_				_	_			-	\vdash	\vdash	
	cloud		Abundancia fraccional de nube dentro del pixel						_	\vdash	_			-	-	\vdash	
	shade	100 - (gv + npv + soil +cloud)	Abundancia fraccional de sombra dentro del pixel Vegetación verde normalizada por sombra						_			_	_		-	\vdash	
Índice	gvs ndfi	gv / (gv + npv + soil + cloud) (gvs - (npv + soil)) /(gvs + (npv + soil))	Índice de fracción de diferencia normalizada								_			-	-	\vdash	
MEM	sefi	(gv+npv -soil) /(gv+npv + soil)	Índice de fracción del ecosistema de sabana		-											\vdash	
	wefi	((gv+npv)-(soil+shade))/(gv+npv)+ (soil+shade)	Índice de fracciones del ecosistema de humedales													П	
	fns	((gv+shade) - soil) / ((gv+shade) + soil)	Índice basada en fracciones gv, shade y soil														
	ndfib	GV-(NPV+Soil+Snow)/ GV+ (NPV+Soil+Snow)	Adaptación del NDFI para los Andes														
Estáticas	altitud		Altitud														
	slope		Pendiente	1													
	slppost		Pendiente Estratificada														
	latitude		Latitud														
	longitude		Longitud														
	Shademask		Mapa de sombras														
	hand30_100 hand30_1000		Inundabilidad	ł													
	hand30_1000		Inundabilidad Inundabilidad														
	hand90_1000		Inundabilidad	t													
	water HAND Om		Inundabilidad	i													
	water HAND 10m		Inundabilidad	1													
	water_HAND_1m		Inundabilidad	1													
	water HAND 2m		Inundabilidad	1													

Anexo 5: Ecosistemas de la Amazonía de Ecuador agrupados según las clases de cobertura y uso de suelo equivalentes de la leyenda MapBiomas Ecuador.

LEYE	LEYENDA		
NIVEL 1	NIVEL 2	- Bioma	ECOSISTEMAS (MAATE, 2013a)
			BOSQUE SIEMPREVERDE MONTANO DE LAS CORDILLERAS DEL CÓNDOR-KUTUKÚ
			BOSQUE SIEMPREVERDE MONTANO BAJO DE LAS CORDILLERAS DEL CÓNDOR-KUTUKÚ
			BOSQUE SIEMPREVERDE PIEMONTANO DE LAS CORDILLERAS DEL CÓNDOR-KUTUKÚ
		Amazonía	BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL ABANICO DEL PASTAZA
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL AGUARICO-PUTUMAYO-CAQUETÚ
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL NAPO-CURARAY
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL TIGRE-PASTAZA
			BOSQUE SIEMPREVERDE MONTANO ALTO DE LA CORDILLERA OCCIDENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE MONTANO BAJO DEL SUR DE LA CORDILLERA ORIENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE MONTANO ALTO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE MONTANO BAJO DE LA CORDILLERA OCCIDENTAL DE LOS ANDES
		Andes	BOSQUE SIEMPREVERDE MONTANO DEL SUR DE LA CORDILLERA ORIENTAL DE LOS ANDES
		7 11.14.05	BOSQUE SIEMPREVERDE MONTANO DE LA CORDILLERA OCCIDENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE PIEMONTANO DE LA CORDILLERA OCCIDENTAL DE LOS ANDES
	Bosque (ID = 3)		BOSQUE SIEMPREVERDE MONTANO BAJO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE MONTANO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES
			BOSQUE SIEMPREVERDE PIEMONTANO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES
FORMACIÓN			MANGLAR DEL JAMA-ZAPOTILLO
BOSCOSA			BOSQUE DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO
			BOSQUE SEMIDECIDUO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL
		Bosque seco ecuatorial	BOSQUE SEMIDECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO
			BOSQUE SIEMPREVERDE ESTACIONAL DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO
			BOSQUE SIEMPREVERDE ESTACIONAL MONTANO BAJO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL
			BOSQUE SIEMPREVERDE ESTACIONAL PIEMONTANO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL
			BOSQUE SIEMPREVERDE MONTANO BAJO DE LA CORDILLERA COSTERA DEL CHOCÓ ECUATORIAL
		Bosque húmedo	BOSQUE SIEMPREVERDE ESTACIONAL DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL
		tropical del Pacífico	BOSQUE SIEMPREVERDE ESTACIONAL PIEMONTANO DE LA CORDILLERA COSTERA DEL CHOCÓ ECUATORIAL
			BOSQUE SIEMPREVERDE DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL
			ARBUSTAL SEMIDECIDUO DEL SUR DE LOS VALLES
			BOSQUE DECIDUO MONTANO BAJO DEL CATAMAYO-ALAMOR
			BOSQUE Y ARBUSTAL SEMIDECIDUO DEL SUR DE LOS VALLES
	Bosque abierto (ID = 4)	Andes	BOSQUE DECIDUO PIEMONTANO DEL CATAMAYO-ALAMOR
			BOSQUE SIEMPREVERDE ESTACIONAL PIEMONTANO DEL CATAMAYO-ALAMOR
			BOSQUE SEMIDECIDUO MONTANO BAJO DEL CATAMAYO-ALAMOR

			BOSQUE SEMIDECIDUO PIEMONTANO DEL CATAMAYO-ALAMOR				
			ARBUSTAL DES FERTICO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
			BOSQUE SIEMPREVERDE ESTACIONAL DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
			BOSQUE SEMIDECIDUO PIEMONTANO DEL CATAMAYO ALAMOR				
			BOSQUE DECIDUO PIEMONTANO DEL CATAMAYO-ALAMOR BOSQUE SIEMPREVERDE ESTACIONAL MONTANO BAJO DE LA CORDILLERA COSTERA DEL PACÍFICO				
			ECUATORIAL				
		Bosque seco ecuatorial	BOSQUE DECIDUO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL				
			BOSQUE SIEMPREVERDE ESTACIONAL PIEMONTANO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL				
			BOSQUE SEMIDECIDUO DE LA CORDILLERA COSTERA DEL PACÍFICO ECUATORIAL				
			BOSQUE SEMIDECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
			BOSQUE BAJO Y ARBUSTAL DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
			BOSQUE DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
			BOSQUE SEMIDECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
		Bosque húmedo tropical del Pacífico	BOSQUE SIEMPREVERDE ESTACIONAL DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL				
			BOSQUE SIEMPREVERDE DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL				
		Bosque seco ecuatorial	MANGLAR DEL JAMA-ZAPOTILLO				
	Manglar (ID = 5)	Bosque húmedo	BOSQUE INUNDADO DE LA LLANURA ALUVIAL DEL CHOCÓ ECUATORIAL				
		tropical del Pacífico	MANGLAR DEL CHOCÓ ECUATORIAL				
			BOSQUE INUNDABLE DE LA LLANURA ALUVIAL DE LOS RÍOS DE ORIGEN AMAZÓNICO				
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL AGUARICO-PUTUMAYO-CAQUETÚ				
	Bosque inundable (ID=6)	Amazonía	BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL ABANICO DEL PASTAZA				
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL TIGRE-PASTAZA				
			BOSQUE INUNDABLE DE LA LLANURA ALUVIAL DE LOS RÍOS DE ORIGEN ANDINO Y DE CORDILLERAS AMAZÓNICAS				
			BOSQUE INUNDADO DE LA LLANURA ALUVIAL DE LA AMAZONÍA				
			BOSQUE INUNDADO DE PALMAS DE LA LLANURA ALUVIAL DE LA AMAZONÍA				
		Andes	BOSQUE INUNDABLE DE LA LLANURA ALUVIAL DE LOS RÍOS DE ORIGEN ANDINO Y DE CORDILLERAS AMAZÓNICAS				
			BOSQUE SIEMPREVERDE PIEMONTANO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES				
			BOSQUE INUNDADO DE LA LLANURA ALUVIAL DE LA AMAZONÍA				
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL NAPO-CURARAY				
		Amazonía	BOSQUE INUNDABLE DE LA LLANURA ALUVIAL DE LOS RÍOS DE ORIGEN AMAZÓNICO				
			BOSQUE SIEMPREVERDE DE TIERRAS BAJAS DEL TIGRE-PASTAZA				
			BOSQUE INUNDABLE DE LA LLANURA ALUVIAL DE LOS RÍOS DE ORIGEN ANDINO Y DE CORDILLERAS AMAZÓNICAS				
			HERBAZAL HÚMEDO SUBNIVAL DEL PÚRAMO				
FORMACIÓN	Formación natural no		ROSETAL CAULESCENTE Y HERBAZAL DEL PÚRAMO (FRAILEJONES)				
NATURAL NO BOSCOSA	forestal inundable (ID=11)		HERBAZAL HÚMEDO MONTANO ALTO SUPERIOR DEL PÚRAMO				
		Andes	ARBUSTAL SIEMPREVERDE Y HERBAZAL DEL PÚRAMO				
			HERBAZAL INUNDABLE DEL PÚRAMO				
			HERBAZAL Y ARBUSTAL SIEMPREVERDE SUBNIVAL DEL PÚRAMO				
			HERBAZAL DEL PÚRAMO				
			HERBAZAL INUNDABLE RIPARIO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO				
		Bosque seco ecuatorial	MANGLAR DEL JAMA-ZAPOTILLO				

			BOSQUE BAJO Y ARBUSTAL DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
		Bosque húmedo tropical del Pacífico	MANGLAR DEL CHOCÓ ECUATORIAL			
			BOSQUE INUNDADO DE LA LLANURA ALUVIAL DEL CHOCÓ ECUATORIAL			
			ARBUSTAL SEMIDECIDUO DEL SUR DE LOS VALLES			
			HERBAZAL HÚMEDO MONTANO ALTO SUPERIOR DEL PÚRAMO			
		Andes	ROSETAL CAULESCENTE Y HERBAZAL DEL PÚRAMO (FRAILEJONES)			
			HERBAZAL Y ARBUSTAL SIEMPREVERDE SUBNIVAL DEL PÚRAMO			
			ARBUSTAL SIEMPREVERDE Y HERBAZAL DEL PÚRAMO			
	Herbazal (ID=12)		HERBAZAL DEL PÚRAMO			
			BOSQUE SEMIDECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
		Bosque seco ecuatorial	BOSQUE BAJO Y ARBUSTAL DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
		bosque seco ecuatoriai	BOSQUE SIEMPREVERDE ESTACIONAL DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
			BOSQUE SIEMPREVERDE ESTACIONAL PIEMONTANO DEL CATAMAYO-ALAMOR			
		Bosque húmedo tropical del Pacífico	BOSQUE SIEMPREVERDE ESTACIONAL DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL			
			HERBAZAL HÚMEDO SUBNIVAL DEL PÚRAMO			
			HERBAZAL HÚMEDO MONTANO ALTO SUPERIOR DEL PÚRAMO			
	Afloramiento rocoso		ARBUSTAL SIEMPREVERDE Y HERBAZAL DEL PÚRAMO			
	(ID=29)	Andes	HERBAZAL Y ARBUSTAL SIEMPREVERDE SUBNIVAL DEL PÚRAMO			
			HERBAZAL ULTRAHÚMEDO SUBNIVAL DEL PÚRAMO			
			HERBAZAL DEL PÚRAMO			
		Amazonía	ARBUSTAL SIEMPREVERDE Y HERBAZAL MONTANO DE LA CORDILLERA DEL CÓNDOR			
		Amazoma	BOSQUE SIEMPREVERDE MONTANO SOBRE MESETAS DE ARENISCA DE LA CORDILLERA DEL CÓNDOR			
			ARBUSTAL SIEMPREVERDE MONTANO DEL NORTE DE LOS ANDES			
			ARBUSTAL SIEMPREVERDE MONTANO DEL SUR DE LOS ANDES			
			BOSQUE SEMIDECIDUO MONTANO BAJO DEL CATAMAYO-ALAMOR			
			BOSQUE SIEMPREVERDE MONTANO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES			
		Andes	BOSQUE SIEMPREVERDE MONTANO ALTO DEL SUR DE LA CORDILLERA ORIENTAL DE LOS ANDES			
	Otra formación natural no forestal		BOSQUE SIEMPREVERDE MONTANO ALTO DEL NORTE DE LA CORDILLERA ORIENTAL DE LOS ANDES			
	(ID=13)		ARBUSTAL SEMIDECIDUO DEL SUR DE LOS VALLES			
			ARBUSTAL SIEMPREVERDE Y HERBAZAL DEL PÚRAMO			
			HERBAZAL DEL PÚRAMO			
			BOSQUE DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
		Bosque seco ecuatorial	BOSQUE BAJO Y ARBUSTAL DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
			ARBUSTAL DES ERTICO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
		Bosque húmedo tropical del Pacífico	BOSQUE SIEMPREVERDE DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL			
		Paggua	MANGLAR DEL JAMA-ZAPOTILLO			
		Bosque seco ecuatorial	BOSQUE DECIDUO DE TIERRAS BAJAS DEL JAMA-ZAPOTILLO			
CUERPO DE AGUA	Acuicultura (ID=31)		MANGLAR DEL CHOCÓ ECUATORIAL			
		ti opical del Facilico	BOSQUE SIEMPREVERDE ESTACIONAL DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL			
			BOSQUE SIEMPREVERDE DE LAS TIERRAS BAJAS DEL CHOCÓ ECUATORIAL			

Anexo 6: Categorías de Uso del Suelo de Ecuador agrupados según las clases de cobertura y uso de suelo equivalentes de la leyenda MapBiomas Ecuador.

LEYE	NDA	REGIÓN	CLASES DE COBERTURA Y USO DE LA TIERRA SEGÚN MAATE, 2019
NIVEL 1	NIVEL 2		
	Bosquel (ID = 3)	Amazonía Andes	- Bosque nativo
FORMACIÓN	Bosque abierto (ID = 4)		- Bosque nativo
BOSCOSA	Manglar (ID = 5)		- Bosque nativo
	Bosque Inundable (ID = 6)	Amazonía	- Bosque nativo
	Formación Natural no Forestal Inundable (ID = 11)	Amazonía Andes	Vegetación herbáceaPáramo
FORMACIÓN	Herbazal (ID = 12)	Andes	Vegetación herbáceaPáramo
NATURAL NO FORESTAL	Afloramiento rocoso (ID= 29)	Amazonía Andes	- Área sin cobertura vegetal
	Otra Formación Natural no Forestal (ID = 13)	Amazonía Andes	- Vegetación arbustiva
	Silvicultura (ID= 9)	Amazonía Andes	- Plantación forestal
AGROPECUARIA Y SILVICULTURA	Mosaico de agricultura y/o pastos (ID= 21)	Amazonía Andes	 Mosaico agropecuario Pastizal Cultivo anual Cultivo semipermanente Cultivo permanente
	Infraestructura Urbana (ID = 24)	Amazonía Andes	Área pobladaInfraestructura
ÁREA SIN VEGETACIÓN	Minería (ID = 30)	Amazonía	- Área sin cobertura vegetal
	Otra área sin vegetación (ID = 25)	Amazonía Andes	 Área sin cobertura vegetal Área poblada Infraestructura
	Río, Lago u Océano (ID = 33)	Amazonía Andes	- Cuerpo de agua - Natural - Artificial
CUERPO DE AGUA	Acuicultura (ID = 31)		- Artificial
	Glaciar (ID = 34)	Andes	- Glaciar

Anexo 7: Categorías de Ecosistemas Nativos de Galápagos agrupados según las clases de cobertura y uso de suelo equivalentes de la leyenda MapBiomas Ecuador.

LEYE	ENDA	BIOMA CLASES DE COBERTURA Y USO DE LA TIERRA SEGÚN Rivas et al., 2018		
NIVEL 1	NIVEL 2	•	Nivasetai, 2010	
	Bosque (ID = 3)	Galápagos	 Bosque y Arbustal Húmedo de Playas Bosque Deciduo Bosque Siempreverde Estacional Bosque y Arbustal Siempreverde Herbazal Húmedo 	
FORMACIÓN BOSCOSA	Bosque abierto (ID = 4)	Galápagos	 Bosque y Arbustal Húmedo de Playas Bosque Deciduo Bosque Siempreverde Estacional Bosque y Arbustal Siempreverde Arbustal Deciduo Manglar Herbazal Húmedo Herbazal Deciduo 	
	Manglar (ID = 5)	Galápagos	Bosque y Arbustal Húmedo de PlayasBosque Deciduo	
	Herbazal (ID = 12)	Galápagos	 Herbazal Deciduo Arbustal Deciduo Herbazal Deciduo de Altura Bosque Deciduo Bosque Siempreverde Estacional 	
FORMACIÓN NATURAL NO BOSCOSA	Afloramiento rocoso (ID= 29)	Galápagos	- Lava Antigua - Lava Reciente	
	Otra Formación Natural no Forestal (ID = 13)	Galápagos	 Bosque y Arbustal Siempreverde Herbazal Deciduo Arbustal Deciduo Bosque Deciduo 	
CUERPO DE AGUA	Río, Lago u Océano (ID = 33)	Galápagos	- Manglar - Agua - Lava Antigua - Lava Reciente	